cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry, Jan 26 2005
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by Gary W. Adamson.
The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by Gary W. Adamson.
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
		

Crossrefs

Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
    LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
    

Formula

a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)

A211216 Expansion of (1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58766, 207783, 740924, 2660139, 9603089, 34818270, 126676726, 462125928, 1689438278, 6186432967, 22682699779, 83249302471, 305773834030, 1123771473120, 4131947428007, 15197952958467, 55915691993228
Offset: 0

Views

Author

Bruno Berselli, May 11 2012

Keywords

Comments

In the paper of Kitaev, Remmel and Tiefenbruck (see the Links section), Q_(132)^(k,0,0,0)(x,0) represents a generating function depending on k and x.
For successive values of k we have:
k=1, the g.f. of A000012: 1/(1-x);
k=2, " A011782: (1-x)/(1-2*x);
k=3, " A001519: (1-2*x)/(1-3*x+x^2);
k=4, " A124302: (1-3*x+x^2)/(1-4*x+3*x^2);
k=5, " A080937: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3);
k=6, " A024175: (1-5*x+6*x^2-x^3)/(1-6*x+10*x^2-4*x^3);
k=7, " A080938: (1-6*x+10*x^2-4*x^3)/(1-7*x+15*x^2-10*x^3+x^4);
k=8, " A033191: (1-7*x+15*x^2-10*x^3+x^4)/(1-8*x+21*x^2
-20*x^3+5*x^4).
This sequence corresponds to the case k=9.
We observe that the coefficients of numerators and denominators are in A115139.
In general, Q_(132)^(k,0,0,0)(x,0) is the generating function for Dyck paths whose maximum height is less than or equal to k; also, it is the generating function of rooted binary trees T which have no nodes 'eta' such that there are >= k left edges on the path from 'eta' to the root of T (see cited paper, page 11).

Crossrefs

Programs

  • Magma
    m:=28; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5)));
  • Mathematica
    CoefficientList[Series[(1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4)/(1 - 9 x + 28 x^2 - 35 x^3 + 15 x^4 - x^5), {x, 0, 27}], x]
  • PARI
    Vec((1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5)+O(x^28))
    

Formula

G.f.: (1-3*x+x^2)*(1-5*x+5*x^2)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
G.f.: 1/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x))))))))). - Philippe Deléham, Mar 14 2013
a(n) = A000108(n) + Sum_{k=1..n} (4*binomial(2*n, n+11*k) - binomial(2*n+2, n+11*k+1)). - Greg Dresden, Jan 28 2023

A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 13, 16, 1, 0, 1, 1, 2, 5, 14, 34, 32, 1, 0, 1, 1, 2, 5, 14, 41, 89, 64, 1, 0, 1, 1, 2, 5, 14, 42, 122, 233, 128, 1, 0, 1, 1, 2, 5, 14, 42, 131, 365, 610, 256, 1, 0, 1, 1, 2, 5, 14, 42, 132, 417, 1094, 1597, 512, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

Number of permutations in S_n avoiding both 132 and 123...k.
T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - Mitch Harris, Mar 06 2004
Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - Clark Kimberling and Ralf Stephan, May 26 2004
Row n of the array gives Taylor series expansion of F_n(t)/F_{n+1}(t), where F_n(t) are the Fibonacci polynomials defined in A259475 [Kreweras, 1970]. - N. J. A. Sloane, Jul 03 2015

Examples

			T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
From _Peter Luschny_, Aug 27 2014: (Start)
Trees with n nodes and height <= h:
h\n  1  2  3  4   5   6    7    8     9    10     11
---------------------------------------------------------
[ 1] 1, 0, 0, 0,  0,  0,   0,   0,    0,    0,     0, ...  A063524
[ 2] 1, 1, 1, 1,  1,  1,   1,   1,    1,    1,     1, ...  A000012
[ 3] 1, 1, 2, 4,  8, 16,  32,  64,  128,  256,   512, ...  A011782
[ 4] 1, 1, 2, 5, 13, 34,  89, 233,  610, 1597,  4181, ...  A001519
[ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281,  9842, ...  A124302
[ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ...  A080937
[ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ...  A024175
[ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ...  A080938
[ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ...  A033191
[10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ...  A211216
---------------------------------------------------------
The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
(End)
		

Crossrefs

Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191, A211216. Main diagonal is A000108.
Cf. A094718 (involutions). Cf. also A259475.

Programs

  • Maple
    # As a triangular array:
    b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
        end:
    A:= (n, k)-> b(2*n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 06 2012
    # As a square array:
    A := proc(n,k) option remember; local j; if n = 1 then 1 elif k = 1 then 0 else add(A(n-j,k)*A(j,k-1), j=1..n-1) fi end:
    linalg[matrix](10, 12, (n,k) -> A(k,n)); # Peter Luschny, Aug 27 2014
  • Mathematica
    A[n_, k_] := A[n, k] = Which[n == 1, 1, k == 1, 0, True, Sum[A[n-j, k]*A[j, k-1], {j, 1, n-1}]]; Table[A[k-n+1, n], {k, 1, 13}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Peter Luschny *)
  • PARI
    A(N, K) = {
      my(m = matrix(N, K, n, k, n==1));
      for (n = 2, N,
      for (k = 2, K,
           m[n,k] = sum(i = 1, n-1, m[n-i,k] * m[i,k-1])));
      return(m);
    }
    A(11,10)~  \\ Gheorghe Coserea, Jan 13 2016

Formula

T(n, k) = Sum_{0A080935(n, k) = T(n, k-1)+A080936(n, k); for k>=n T(n, k) = A000108(n).
T(n, k) = 2^(2n+1)/(k+2) * Sum_{i=1..k+1} (sin(Pi*i/(k+2))*cos(Pi*i/(k+2))^n)^2 for n>=1. - Herbert Kociemba, Apr 28 2004
G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.

A094829 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6.

Original entry on oeis.org

1, 6, 27, 109, 417, 1548, 5644, 20349, 72846, 259579, 922209, 3269889, 11579032, 40967400, 144863001, 512050438, 1809503019, 6393427173, 22587086305, 79791176292, 281856708180, 995606748757, 3516721295214
Offset: 2

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
a(n)/a(n-1) tends to 3.53208888...; = 2 + 2*cos(2*Pi/9) = A332438. - Gary W. Adamson, May 29 2008
From Wolfdieter Lang, Mar 27 2020: (Start)
The explicit form is written in terms of r = rho(9) = 2*cos(Pi/9) = A332437 as a Binet - de Moivre type formula a(n+2) = r^(2*(n+1))*(A(r) + Bp(r)*Cp(r)^(n+1)) + Bm(r)*Cm(r)^(n+1)), with A(r) = (1/9)*(2 + 5*r -r^2), approx. 0.87387081, Bp(r) = (1/18)*((14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(8 - r - 4*r^2), approx. -0.88974898, Cp(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 + sqrt(3*(3*r+1)*(r-1))) = 32 + 4*r - 11*r^2, approx. 0.66456322, Bm(r) = (1/18)*(-(14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(-10 -4*r + 5*r^2), approx. 0.01587816, and Cm(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 - sqrt(3*(3*r + 1)*(r - 1))) = 21 + 2*r - 7*r^2, approx. 0.03414828, for n >= 0.
Proof by partial fraction decomposition of the g.f. using the roots of 1 - 6*x + 9*x^2 - x^3 written in terms of r, which are X1(r) = 1/r^2 = 9 + r - 3*r^2, approx. 0.28311858, Xp(r) = (r/2)*(3*r - 1 + sqrt((3*(3*r+1))*(r-1))) = 1 + 2*r + r^2, approx. 8.29085937, Xm(r) = (r/2)*(3*r - 1 - sqrt((3*(3*r + 1))*(r - 1))) = -1 - 3*r + 2*r^2, approx. 0.42602205. Xp(r)*Xm(r) = r^2. The reduction with the minimal polynomial of r = rho(9), i.e., C(9, x) = x^3 - 3*x - 1 (see A187360) has been used to avoid all powers of r larger than 2. The reciprocal roots turn out to be the roots of the minimal polynomial of r^2, see A332438. 1/X1(r) = r^2, 1/Xp(r) = 2 - r, and 1/Xm(r) = 4 + r - r^2.
This proves the above stated limit of a(n+3)/a(n+2) for n to infinity, namely r^2 = A332438, approx. 3.53208889.
(End)

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^2/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x], 2] (* Michael De Vlieger, Aug 05 2021 *)

Formula

a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(2*r*Pi/3)*(2*cos(r*Pi/9))^(2*n+1), for n >= 2.
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: x^2/(1 - 6x + 9x^2 - x^3).
For the explicit form of a(n+2), for n >= 0, see a comment above. - Wolfdieter Lang, Mar 26 2020

A094256 Expansion of x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ).

Original entry on oeis.org

1, 7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
Offset: 1

Views

Author

Gary W. Adamson, Apr 25 2004

Keywords

Comments

Previous name was: Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 10 -15 7]. Perform M^n * [1 0 0 0] = [p q r s]. Then a(n-3), a(n-2), a(n-1), a(n) = -p, -q, -r, -s respectively.
a(n)/a(n-1) tends to 3.53208888624... = 4*cos^2(Pi/9), which is an eigenvalue of the matrix and a root of the polynomial x^4 - 6x^3 + 15x^2 -10x + 1 = 0 (having roots 4*cos^2(r*Pi/9), with r = 1,2,3,4).
Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 7. - Herbert Kociemba, Jun 13 2004
From Wolfdieter Lang, Mar 27 2020: (Start)
This sequence, with offset -5, starting with -85, -10, -1, 0, 0, 0, 1, 7, ... appears in the formula for the n-th power of the 4 X 4 tridiagonal matrix given in A332602 as M_4 = matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): (M_4)^n = a(n-2)*(M_4)^3 + b(n)*(M_4)^2 + c(n)*M_4 - a(n-3)*1_4, for n >= 0, with the 4 X 4 unit Matrix 1_4, b(n) = -15*a(n-3) + 10*a(n-4) - a(n-5), and c(n) = 10*a(n-3) - a(n-4). Proof from the characteristc polynomial of M_4 (see a comment in A332602) and the Cayley-Hamilton theorem.
From the proof that A094829(n+3)/A094829(n+2) -> rho(9)^2 = A332438 for n-> infinitiy, with rho(9) = 2*cos(Pi/9) = A332437 (see a comment in A094829), and a formula given below the same limit is obtained for a(n+1)/a(n) for n -> infinity, as stated in a comment above. (End)

Examples

			a(2), a(3), a(4), a(5) = 7, 34, 143, 560, since M^5 * [1 0 0 0] = [ -7 -34 -143 -560].
Cayley-Hamilton: (M_4)^5 = a(3)*(M_4)^3 + b(5)*(M_4)^2 + c(5)*M_4 - a(2)*1_4 = 34*(M_4)^3 - 95*(M_4)^2 + 69*M_4 - 7*1_4. - _Wolfdieter Lang_, Mar 27 2020
		

References

  • C. V. Durell and A. Robson, "Advanced Trigonometry", Dover 2003, p. 216.

Crossrefs

a(n) = A005023(n-1), n > 1. - R. J. Mathar, Sep 05 2008

Programs

  • Magma
    I:=[1,7,34,143]; [n le 4 select I[n] else 7*Self(n-1) - 15*Self(n-2) + 10*Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    Table[ (MatrixPower[{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 10, -15, 7}}, n].{-1, 0, 0, 0})[[4]], {n, 24}] (* Robert G. Wilson v, Apr 28 2004 *)
    LinearRecurrence[{7, -15, 10, -1}, {1, 7, 34, 143}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
  • PARI
    Vec(x / ( (x-1)*(x^3-9*x^2+6*x-1) ) + O(x^30)) \\ Michel Marcus, Jul 25 2015

Formula

From Herbert Kociemba, Jun 13 2004: (Start)
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(7*r*Pi/9)*(2*cos(r*Pi/9))^(2n+4).
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
G.f.: x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ). (End)
3*a(n) = 1 - A094829(n+2) + 8*A094829(n+1) - A094829(n). - R. J. Mathar, Jun 29 2012 [offset corrected, and A094829(1) = 0. - Wolfdieter Lang, Mar 27 2020]
a(n) = (1/3)*(1 + 2*A094829(n+1) + 8*A094829(n) - A094829(n-1)), for n >= 1, with A094829(1) and A094829(0) = 0. - Wolfdieter Lang, Mar 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 28 2004
a(25)-a(26) from Vincenzo Librandi, Jul 25 2015
New name (using g.f. from Herbert Kociemba) from Joerg Arndt, Jul 25 2015

A332602 Tridiagonal matrix M read by antidiagonals: main diagonal is 1,2,2,2,2,..., two adjacent diagonals are 1,1,1,1,1,...

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2020, following a suggestion from Gary W. Adamson

Keywords

Comments

From Gary W. Adamson, Mar 11 2020: (Start)
The upper left entry of M^n gives the Catalan numbers A000108. Extracting 2 X 2, 3 X 3, and 4 X 4 submatrices from M; then generating sequences from the upper left entries of M^n, we obtain the following sequences:
1, 1, 2, 5, 13, ... = A001519 and the convergent is 2.61803... = 2 + 2*cos(2*Pi/5) = (2*cos(Pi/5))^2.
1, 1, 2, 5, 14, 42, 131, ... = A080937 and the convergent is 3.24697... = 2 + 2*cos(2*Pi/7) = (2*cos(Pi/7))^2.
1, 1, 2, 5, 14, 42, 132, 429, 1429, ... = A080938 and the convergent is 3.53208... = 2 + 2*cos(2*Pi/9) = (2*cos(Pi/9))^2. (End)
The characteristic polynomial for the N X N main submatrix M_N is Phi(N, x) = S(N, 2-x) - S(N-1, 2-x), with Chebyshev's S polynomial (see A049310) evaluated at 2-x. Proof by determinant expansion, to obtain the recurrence Phi(N, x) - (x-2)*Phi(N-1, x) - Phi(N-2, x), for N >= 2, and Phi(0, x) = 1 and Phi(1, x) = 1 - x, that is Phi(-1, x) = 1. The trace is tr(M_N) = 1 + 2^(N-1) = A000051(N-1), and Det(M_N) = 1. - Wolfdieter Lang, Mar 13 2020
The explicit form of the characteristic polynomial for the N X N main submatrix M_N is Phi(N, x) := Det(M_N - x*1_N) = Sum_{k=0..N} binomial(N+k, 2*k)*(-x)^k = Sum_{k=0..N} A085478(N, k)*(-x)^k, for N >= 0, with Phi(0, x) := 1. Proof from the recurrence given in the preceding comment. - Wolfdieter Lang, Mar 25 2020
For the proofs of the 2 X 2, 3 X 3 and 4 X 4 conjectures, see the comments in the respective A-numbers A001519, A080937 and A080938. - Wolfdieter Lang, Mar 30 2020
Replace the main diagonal 1,2,2,2,... of the matrix M with 1,0,0,0,...; 1,1,1,1,...; 1,3,3,3,...; 1,2,1,2,...; 1,2,3,4,...; 1,0,1,0...; and 1,1,0,0,1,1,0,0,.... Take powers of M and extract the upper left terms, resulting in respectively: A001405, A001006, A033321, A176677, A006789, A090344, and A007902. - Gary W. Adamson, Apr 12 2022
The statement that the upper left entry of M^n is a Catalan number is equivalent to Exercise 41 of R. Stanley, "Catalan Numbers." - Richard Stanley, Feb 28 2023
If the upper left 1 in matrix M is replaced with 3, taking powers of the resulting matrix and extracting the upper left terms apparently results in sequence A001700. - Gary W. Adamson, Apr 03 2023

Examples

			The matrix begins:
  1, 1, 0, 0, 0, ...
  1, 2, 1, 0, 0, ...
  0, 1, 2, 1, 0, ...
  0, 0, 1, 2, 1, ...
  0, 0, 0, 1, 2, ...
  ...
The first few antidiagonals are:
  1;
  1, 1;
  0, 2, 0;
  0, 1, 1, 0;
  0, 0, 2, 0, 0;
  0, 0, 1, 1, 0, 0;
  0, 0, 0, 2, 0, 0, 0;
  0, 0, 0, 1, 1, 0, 0, 0;
  0, 0, 0, 0, 2, 0, 0, 0, 0;
  0, 0, 0, 0, 1, 1, 0, 0, 0, 0;
  ...
Characteristic polynomial of the 3 X 3 matrix M_3: Phi(3, x) = 1 - 6*x + 5*x^2 - x^3, from {A085478(3, k)}_{k=0..3} = {1, 6, 5, 1}. - _Wolfdieter Lang_, Mar 25 2020
		

References

  • Richard P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.

Crossrefs

Cf. A001333 (permanent of the matrix M).
Cf. A054142, A053123, A011973 (characteristic polynomials of submatrices of M).
Cf. A001700.

A217315 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 8, T(0,k)= 1 if 0<=k<=7, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 0, 7, 20, 28, 14, 0, 0, 0, 0, 0, 7, 27, 48, 42, 0, 0, 0, 0, 0, 0, 0, 34, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 34, 109, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 274, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 417, 571, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 27, 34, 34, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 75, 109, 143, 143, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 165, 274, 417, 560, 560, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 297, 571, 988, 1548, 2108, 2108, 0, ... row n=5
...
		

Crossrefs

Cf. Similar sequence: A216230, A216228, A216226, A216238, A216054, A217257.

Programs

  • Mathematica
    t[0, k_ /; k <= 7] = 1; t[n_, k_] /; k < n || k > n+7 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

Formula

T(n,n) = A080938(n).
T(n,n+1) = A080938(n+1).
T(n,n+2) = A094826(n+1).
T(n,n+3) = A094827(n+1).
T(n,n+4) = A094828(n+2).
T(n,n+5) = A094829(n+2).
T(n,n+6) = T(n,n+7) = A094256(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A061551(n).

A122881 Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2006

Keywords

Comments

Convergents of k-th diagonals relate to (2k+3)-polygons; e.g., right border relates to the pentagon (N=5), next border relates to the heptagon (N=7). Convergents of the diagonals are 2 + 2*cos(2*Pi/N) and are roots to Morgan-Voyce polynomials. k2 diagonal = A080937, number of Catalan paths of 2n steps of all values less than or equal to 5. k3 diagonal = A080938, number of Catalan paths of 2n steps of all values less than or equal to 7.

Examples

			For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal.
For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ...
First few rows of the triangle are:
  1;
  1, 2;
  1, 2, 5;
  1, 2, 5, 13;
  1, 2, 5, 14, 34;
  1, 2, 5, 14, 42, 89;
  1, 2, 5, 14, 42, 131, 233;
  1, 2, 5, 14, 42, 132, 417, 610;
  ...
		

Crossrefs

Formula

Begin with polygonal matrices of the form (exemplified by the Heptagonal matrix M3: [1, 1, 1; 1, 1, 0; 1, 0, 0]). Let matrix P3 = 1 / M3^2; then for n X n matrices P2, P3, P4...perform P^n * [1, 0, 0] letting this vector = k-th diagonal of the triangle.
Showing 1-8 of 8 results.