cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A202062 Number of ascent sequences avoiding the pattern 201.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245, 435492, 2261769, 12033165, 65369590, 361661809, 2033429427, 11597912588, 67004252081, 391599609911, 2312726369640, 13789161819383, 82932744795049, 502777950712812, 3070529443569777, 18879637374473465, 116815588935673706, 727011479685559453
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493.
Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.

Formula

Guttmann and Kotesovec give asymptotics: a(n) ~ c * d^n / n^(9/2), where d = (14/3*cos(arccos(13/14)/3) + 8/3) = 7.2958969432397723745722241... is the root of the equation 1 + 5*d - 8*d^2 + d^3 = 0 and c = 35*sqrt((4107 - 84*sqrt(9289) * cos(Pi/3 + arccos(255709*sqrt(9289)/24653006)/3))/Pi)/16 = 13.4299960869439... - Vaclav Kotesovec, Sep 22 2021

Extensions

a(15) from Kanstancin Novikau, Mar 21 2017
a(16)-a(27) from Ildar Gainullin, Feb 11 2020

A202059 Number of ascent sequences avoiding the pattern 100.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 153, 583, 2410, 10721, 50965, 257393, 1374187, 7722862, 45520064, 280502924, 1802060232, 12040040899, 83475921469, 599400745354, 4449689901306, 34096169966924, 269286884243138, 2189193150557825, 18297258191472880, 157049750065028868
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493. Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.

Extensions

Corrected a(7), was 383, but should be 583 according to Duncan-Steimgrimsson paper and independent computation. - Andrew Baxter, Jan 06 2014
a(0) and a(15)-a(21) from Alois P. Heinz, Jan 06 2014
a(22) from Alois P. Heinz, Oct 06 2014
a(23) from Alois P. Heinz, Apr 20 2016
More terms from Anthony Guttmann, Nov 04 2021

A202060 Number of ascent sequences avoiding the pattern 110.

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 143, 510, 1936, 7774, 32848, 145398, 671641, 3227218, 16084747, 82955090, 441773793, 2424845273, 13695855478, 79485625385, 473393639992, 2889930405750, 18064609329598, 115513453404597, 754956282308784, 5039064184597772, 34323984497482559
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493. Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.

Extensions

a(0) and a(15)-a(17) from Alois P. Heinz, Jan 07 2014
More terms from Anthony Guttmann, Nov 04 2021

A202061 Number of ascent sequences avoiding the pattern 120.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 133, 442, 1535, 5546, 20754, 80113, 317875, 1292648, 5374073, 22794182, 98462847, 432498659, 1929221610, 8728815103, 40017844229, 185727603829, 871897549029, 4137132922197, 19828476952117, 95934298966615, 468291607852143, 2305162065138433
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2011

Keywords

Comments

It appears that no formula or g.f. is known.

Crossrefs

Total number of ascent sequences is given by A022493. Number of ascent sequences avoiding 001 (and others) is A000079; 102 is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.

Extensions

More terms from Anthony Guttmann, Nov 04 2021

A294220 Number A(n,k) of ascent sequences of length n where no letter multiplicity is larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 10, 1, 0, 1, 1, 2, 5, 14, 27, 1, 0, 1, 1, 2, 5, 15, 47, 83, 1, 0, 1, 1, 2, 5, 15, 52, 180, 277, 1, 0, 1, 1, 2, 5, 15, 53, 210, 773, 1015, 1, 0, 1, 1, 2, 5, 15, 53, 216, 964, 3701, 4007, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Oct 25 2017

Keywords

Examples

			A(4,2) = 10: 0123, 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
Square array A(n,k) begins:
  1, 1,    1,    1,    1,    1,    1,    1,    1, ...
  0, 1,    1,    1,    1,    1,    1,    1,    1, ...
  0, 1,    2,    2,    2,    2,    2,    2,    2, ...
  0, 1,    4,    5,    5,    5,    5,    5,    5, ...
  0, 1,   10,   14,   15,   15,   15,   15,   15, ...
  0, 1,   27,   47,   52,   53,   53,   53,   53, ...
  0, 1,   83,  180,  210,  216,  217,  217,  217, ...
  0, 1,  277,  773,  964, 1006, 1013, 1014, 1014, ...
  0, 1, 1015, 3701, 4960, 5270, 5326, 5334, 5335, ...
		

Crossrefs

Columns k=0-3 give: A000007, A000012, A202058, A317784.
Main diagonal gives A022493.
Cf. A294219.

Programs

  • Maple
    b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
          add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
              `if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
        end:
    A:= (n, k)-> b(n, 0$3, min(n, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[ If[ Coefficient[p, x, j] == k, 0, b[n-1, j, t + If[j>i, 1, 0], p + x^j, k]], {j, 1, t+1}]];
    A[n_, k_] := b[n, 0, 0, 0, Min[n, k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Aug 05 2018, translated from Maple *)

Formula

A(n,k) = Sum_{j=0..k} A294219(n,j).
A(n,k) = A(n,n) = A022493(n) for k >= n.
Showing 1-5 of 5 results.