A122589
Expansion of 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6).
Original entry on oeis.org
1, 11, 76, 425, 2109, 9709, 42504, 179630, 740025, 2991495, 11920740, 46981740, 183579396, 712493461, 2750450981, 10572046555, 40495806764, 154683305139, 589504177384, 2242448706435, 8517201473375, 32309383853565
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-11*x+45*x^2 -84*x^3+70*x^4-21*x^5+x^6) )); // G. C. Greubel, Nov 29 2021
-
A122589:= proc(n) coeftayl(1/(4096-11264*x^2+11520*x^4-5376*x^6+1120*x^8-84*x^10 +x^12), x=0,2*n); %*2^(2*n+12); end: seq(A122589(n), n=0..30); # R. J. Mathar, Sep 21 2007
-
m=12; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[ SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x,0,30}], n], {n,1,30,2}]
-
def A122589_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-11*x+45*x^2-84*x^3+70*x^4-21*x^5+x^6) ).list()
A122589_list(30) # G. C. Greubel, Nov 29 2021
A370051
Expansion of (1-5*x+6*x^2-x^3)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
Original entry on oeis.org
1, 4, 14, 48, 165, 572, 2002, 7071, 25176, 90251, 325358, 1178291, 4282811, 15612092, 57040186, 208772476, 765186422, 2807556411, 10309833845, 37883902913, 139275229088, 512223805060, 1884404481767, 6934058102453, 25519786076294
Offset: 0
a(0) = binomial(2,0);
a(1) = binomial(4,1);
a(2) = binomial(6,2) - binomial(6,0);
a(3) = binomial(8,3) - binomial(8,1);
a(4) = binomial(10,4) - binomial(10,2).
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 4, 14, 48, 165}, 30] (* Paolo Xausa, Feb 20 2024 *)
A370074
Expansion of (1 - 2*x) * (1 - 4*x + 2*x^2) / (1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
Original entry on oeis.org
1, 3, 9, 28, 90, 297, 1001, 3432, 11933, 41971, 149017, 533141, 1919215, 6942950, 25215181, 91858456, 335449202, 1227312350, 4496994689, 16496266812, 60566602692, 222524531559, 817997639090, 3008175954887, 11066005530460, 40717739034761
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1},{1,3,9,28,90},26] (* James C. McMahon, Mar 12 2024 *)
A370568
Expansion of g.f. (1-x) / (1-9*x+28*x^2-35*x^3+15*x^4-x^5).
Original entry on oeis.org
1, 8, 44, 207, 896, 3689, 14706, 57361, 220363, 837430, 3157440, 11835916, 44176890, 164355675, 609981045, 2259680355, 8359285126, 30890694534, 114059719703, 420887785505, 1552362630016, 5723494732725, 21096366345741, 77742879583057, 286445422547405
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 8, 44, 207, 896}, 25] (* Paolo Xausa, Jun 09 2024 *)
A370391
Expansion of (1 - 2*x)/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
Original entry on oeis.org
1, 7, 35, 154, 636, 2533, 9861, 37810, 143451, 540155, 2022735, 7543771, 28048829, 104050724, 385320419, 1425038684, 5264963100, 19437087382, 71715418017, 264483764116, 975070823122, 3593840295815, 13243217176106, 48793364067681, 179753027448972
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 7,35,154,636}, 25] (* James C. McMahon, Mar 12 2024 *)
Showing 1-5 of 5 results.
Comments