Peter Morris has authored 5 sequences.
A370568
Expansion of g.f. (1-x) / (1-9*x+28*x^2-35*x^3+15*x^4-x^5).
Original entry on oeis.org
1, 8, 44, 207, 896, 3689, 14706, 57361, 220363, 837430, 3157440, 11835916, 44176890, 164355675, 609981045, 2259680355, 8359285126, 30890694534, 114059719703, 420887785505, 1552362630016, 5723494732725, 21096366345741, 77742879583057, 286445422547405
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 8, 44, 207, 896}, 25] (* Paolo Xausa, Jun 09 2024 *)
A370391
Expansion of (1 - 2*x)/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
Original entry on oeis.org
1, 7, 35, 154, 636, 2533, 9861, 37810, 143451, 540155, 2022735, 7543771, 28048829, 104050724, 385320419, 1425038684, 5264963100, 19437087382, 71715418017, 264483764116, 975070823122, 3593840295815, 13243217176106, 48793364067681, 179753027448972
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 7,35,154,636}, 25] (* James C. McMahon, Mar 12 2024 *)
A370074
Expansion of (1 - 2*x) * (1 - 4*x + 2*x^2) / (1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
Original entry on oeis.org
1, 3, 9, 28, 90, 297, 1001, 3432, 11933, 41971, 149017, 533141, 1919215, 6942950, 25215181, 91858456, 335449202, 1227312350, 4496994689, 16496266812, 60566602692, 222524531559, 817997639090, 3008175954887, 11066005530460, 40717739034761
Offset: 0
-
LinearRecurrence[{9, -28, 35, -15, 1},{1,3,9,28,90},26] (* James C. McMahon, Mar 12 2024 *)
A370051
Expansion of (1-5*x+6*x^2-x^3)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
Original entry on oeis.org
1, 4, 14, 48, 165, 572, 2002, 7071, 25176, 90251, 325358, 1178291, 4282811, 15612092, 57040186, 208772476, 765186422, 2807556411, 10309833845, 37883902913, 139275229088, 512223805060, 1884404481767, 6934058102453, 25519786076294
Offset: 0
a(0) = binomial(2,0);
a(1) = binomial(4,1);
a(2) = binomial(6,2) - binomial(6,0);
a(3) = binomial(8,3) - binomial(8,1);
a(4) = binomial(10,4) - binomial(10,2).
-
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 4, 14, 48, 165}, 30] (* Paolo Xausa, Feb 20 2024 *)
A336602
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), with initial terms a(0)=1, a(1)=7, a(2)=35, a(3)=154.
Original entry on oeis.org
1, 7, 35, 154, 632, 2487, 9529, 35875, 133471, 492538, 1807268, 6604891, 24069905, 87539199, 317907067, 1153307002, 4180842064, 15147734815, 54860799881, 198634274203, 719047882103, 2602540622106, 9418700937340, 34084040705539, 123335178991777, 446277892754167, 1614771692630099
Offset: 0
Comments