cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Peter Morris

Peter Morris's wiki page.

Peter Morris has authored 5 sequences.

A370568 Expansion of g.f. (1-x) / (1-9*x+28*x^2-35*x^3+15*x^4-x^5).

Original entry on oeis.org

1, 8, 44, 207, 896, 3689, 14706, 57361, 220363, 837430, 3157440, 11835916, 44176890, 164355675, 609981045, 2259680355, 8359285126, 30890694534, 114059719703, 420887785505, 1552362630016, 5723494732725, 21096366345741, 77742879583057, 286445422547405
Offset: 0

Author

Peter Morris, Feb 22 2024

Keywords

Comments

The sequence is constructed from a truncated version of Pascal's Triangle. See A370074 for an example. a(n) arises from the Gambler's Ruin problem and represents the number of ways a gambler is ruined after starting with $8 with a maximum $11 causing retirement.

Programs

  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1}, {1, 8, 44, 207, 896}, 25] (* Paolo Xausa, Jun 09 2024 *)

Formula

a(n) = 9*a(n-1)-28*a(n-2)+35*a(n-3)-15*a(n-4)+a(n-5) for n>=5.

A370391 Expansion of (1 - 2*x)/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).

Original entry on oeis.org

1, 7, 35, 154, 636, 2533, 9861, 37810, 143451, 540155, 2022735, 7543771, 28048829, 104050724, 385320419, 1425038684, 5264963100, 19437087382, 71715418017, 264483764116, 975070823122, 3593840295815, 13243217176106, 48793364067681, 179753027448972
Offset: 0

Author

Peter Morris, Feb 22 2024

Keywords

Comments

The sequence is constructed by a truncated version of Pascal's Triangle.
1
1 1
1 2 1
1 3 3 1
1 4 6 4
1 5 10 10 4
1 6 15 20 14
7 21 35 34 14
7 28 56 69 48
35 84 125 117 48
35 119 209 242 165
...
After truncation the sequence appears as the left vertical column. The right column sequence can be in A370051.
a(n) arises from the Gambler's Ruin problem and represents the number of ways a gambler is ruined after starting with $7 with a maximum $11 causing retirement.

Programs

  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1}, {1, 7,35,154,636}, 25] (* James C. McMahon, Mar 12 2024 *)

Formula

a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5).

A370074 Expansion of (1 - 2*x) * (1 - 4*x + 2*x^2) / (1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).

Original entry on oeis.org

1, 3, 9, 28, 90, 297, 1001, 3432, 11933, 41971, 149017, 533141, 1919215, 6942950, 25215181, 91858456, 335449202, 1227312350, 4496994689, 16496266812, 60566602692, 222524531559, 817997639090, 3008175954887, 11066005530460, 40717739034761
Offset: 0

Author

Peter Morris, Feb 08 2024

Keywords

Comments

The sequence is constructed from a truncated version of Pascal's Triangle.
1
1 1
1 2 1
3 3 1
3 6 4 1
9 10 5 1
9 19 15 6 1
28 34 21 7 1
28 62 55 28 8
90 117 83 36 8
90 207 200 119 44
297 407 319 163 44
...
After truncation the sequence appears as the left vertical column. The right column sequence can be found in A370568. a(n) arises from the Gambler's Ruin problem and it represents the number of ways a gambler is ruined in the Gambler's Ruin problem starting with $3 and with a maximum $11 causing retirement.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1},{1,3,9,28,90},26] (* James C. McMahon, Mar 12 2024 *)

Formula

a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) for n >= 5.

A370051 Expansion of (1-5*x+6*x^2-x^3)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

Original entry on oeis.org

1, 4, 14, 48, 165, 572, 2002, 7071, 25176, 90251, 325358, 1178291, 4282811, 15612092, 57040186, 208772476, 765186422, 2807556411, 10309833845, 37883902913, 139275229088, 512223805060, 1884404481767, 6934058102453, 25519786076294
Offset: 0

Author

Peter Morris, Feb 08 2024

Keywords

Comments

In Pascal's triangle, subtract the 6th column to the left of the central column from the 2nd column.

Examples

			a(0) = binomial(2,0);
a(1) = binomial(4,1);
a(2) = binomial(6,2) - binomial(6,0);
a(3) = binomial(8,3) - binomial(8,1);
a(4) = binomial(10,4) - binomial(10,2).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1}, {1, 4, 14, 48, 165}, 30] (* Paolo Xausa, Feb 20 2024 *)

Formula

a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5); a(0) = 1, a(1) = 4, a(2) = 14, a(3) = 48, a(4) = 165.

A336602 a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), with initial terms a(0)=1, a(1)=7, a(2)=35, a(3)=154.

Original entry on oeis.org

1, 7, 35, 154, 632, 2487, 9529, 35875, 133471, 492538, 1807268, 6604891, 24069905, 87539199, 317907067, 1153307002, 4180842064, 15147734815, 54860799881, 198634274203, 719047882103, 2602540622106, 9418700937340, 34084040705539, 123335178991777, 446277892754167, 1614771692630099
Offset: 0

Author

Peter Morris, Dec 20 2020

Keywords

Crossrefs

Extension of patterns illustrated in A001519, A033191, A033190, A094667, A030191, A094788.

Formula

G.f.: ( 1-x+x^3 ) / ( (5*x^2-5*x+1)*(x^2-3*x+1) ). - R. J. Mathar, May 05 2023

Extensions

Offset corrected by Jon E. Schoenfield, Feb 05 2021