A302126 Interleaved Fibonacci and Lucas numbers.
0, 2, 1, 1, 1, 3, 2, 4, 3, 7, 5, 11, 8, 18, 13, 29, 21, 47, 34, 76, 55, 123, 89, 199, 144, 322, 233, 521, 377, 843, 610, 1364, 987, 2207, 1597, 3571, 2584, 5778, 4181, 9349, 6765, 15127, 10946, 24476, 17711, 39603, 28657, 64079, 46368, 103682, 75025, 167761
Offset: 0
Examples
a(10) = Fibonacci(5) = 5; a(11) = Lucas(5) = 11.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- T. Crilly, Interleaving Integer Sequences, The Mathematical Gazette, Vol. 91, No. 520 (Mar., 2007), pp. 27-33.
- Wikipedia, Interleave sequence
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
GAP
Flat(List([1..25],n->[Fibonacci(n),Lucas(1,-1,n)[2]])); # Muniru A Asiru, Apr 02 2018
-
Maple
a:= n-> (<<0|1>, <1|1>>^iquo(n, 2, 'r'). <<2*r, 1>>)[1, 1]: seq(a(n), n=0..60); # Alois P. Heinz, Apr 23 2018
-
Mathematica
Table[{Fibonacci[n], LucasL[n]}, {n, 0, 25}] // Flatten LinearRecurrence[{0, 1, 0, 1}, {0, 2, 1, 1}, 52] Flatten@ Array[{LucasL@#, Fibonacci@#} &, 26, 0] (* or *) CoefficientList[Series[(x^3 - x^2 - 2x)/(x^4 + x^2 - 1), {x, 0, 51}], x] (* Robert G. Wilson v, Apr 02 2018 *)
-
PARI
concat(0, Vec(x*(2 - x)*(1 + x) / (1 - x^2 - x^4) + O(x^60))) \\ Colin Barker, Apr 02 2018
Formula
a(0) = 0; a(1) = 2; a(2) = 1; a(3) = 1; a(n) = a(n-2) + a(n-4), n >= 4.
G.f.: x*(2 - x)*(1 + x) / (1 - x^2 - x^4). - Colin Barker, Apr 02 2018
a(0) = 0; a(1) = 2; a(2n) = (a(2n-1) + a(2n-2))/2; a(2n+1) = a(2n) + 2*a(2n-2), n >= 1. - Daniel Forgues, Jul 29 2018
Extensions
More terms from Colin Barker, Apr 02 2018
Comments