cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075502 Triangle read by rows: Stirling2 triangle with scaled diagonals (powers of 7).

Original entry on oeis.org

1, 7, 1, 49, 21, 1, 343, 343, 42, 1, 2401, 5145, 1225, 70, 1, 16807, 74431, 30870, 3185, 105, 1, 117649, 1058841, 722701, 120050, 6860, 147, 1, 823543, 14941423, 16235562, 4084101, 360150, 13034, 196, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(7*z) - 1)*x/7) - 1.

Examples

			[1]; [7,1]; [49,21,1]; ...; p(3,x) = x * (49 + 21*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*      1
*      7        1
*     49       21        1
*    343      343       42       1
*   2401     5145     1225      70      1
*  16807    74431    30870    3185    105     1
* 117649  1058841   722701  120050   6860   147   1
* 823543 14941423 16235562 4084101 360150 13034 196 1
(End)
		

Crossrefs

Columns 1-7 are A000420, A075921-A075925, A076002. Row sums are A075506.

Programs

  • Mathematica
    Flatten[Table[7^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(7^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (7^(n-m)) * stirling2(n, m).
a(n, m) = 7*m*a(n-1, m) + a(n-1, m-1), n>=m>=1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*7)^(n-m))/(m-1)! for n >= m >= 1, else 0.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-7*k*x), m >= 1.
E.g.f. for m-th column: (((exp(7*x)-1)/7)^m)/m!, m >= 1.