A075502 Triangle read by rows: Stirling2 triangle with scaled diagonals (powers of 7).
1, 7, 1, 49, 21, 1, 343, 343, 42, 1, 2401, 5145, 1225, 70, 1, 16807, 74431, 30870, 3185, 105, 1, 117649, 1058841, 722701, 120050, 6860, 147, 1, 823543, 14941423, 16235562, 4084101, 360150, 13034, 196, 1
Offset: 1
Examples
[1]; [7,1]; [49,21,1]; ...; p(3,x) = x * (49 + 21*x + x^2). From _Andrew Howroyd_, Mar 25 2017: (Start) Triangle starts * 1 * 7 1 * 49 21 1 * 343 343 42 1 * 2401 5145 1225 70 1 * 16807 74431 30870 3185 105 1 * 117649 1058841 722701 120050 6860 147 1 * 823543 14941423 16235562 4084101 360150 13034 196 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
Flatten[Table[7^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
PARI
for(n=1, 11, for(m=1, n, print1(7^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Formula
a(n, m) = (7^(n-m)) * stirling2(n, m).
a(n, m) = 7*m*a(n-1, m) + a(n-1, m-1), n>=m>=1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*7)^(n-m))/(m-1)! for n >= m >= 1, else 0.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-7*k*x), m >= 1.
E.g.f. for m-th column: (((exp(7*x)-1)/7)^m)/m!, m >= 1.
Comments