Original entry on oeis.org
1, 105, 6860, 360150, 16689351, 714717675, 29027537770, 1135995214200, 43285014073301, 1617172212901245, 59536438207963080, 2167526889938878650, 78241359077417918851, 2805721220626405336815, 100098458195602131838790
Offset: 0
Original entry on oeis.org
1, 147, 13034, 907578, 54807627, 3016638009, 155726334148, 7676501248416, 365698066506773, 16976491006185711, 772549060467762942, 34614587429584922214, 1532054031119984651839, 67151990527665760714053
Offset: 0
-
CoefficientList[Series[1/Product[1-7k x,{k,6}],{x,0,20}],x] (* Harvey P. Dale, May 25 2012 *)
A076002
Seventh column of triangle A075502.
Original entry on oeis.org
1, 196, 22638, 2016840, 153632787, 10544644572, 672413918176, 40624783239040, 2356312445219733, 132435800821952628, 7261903300743441714, 390447849166013566200, 20663998640254649395639
Offset: 0
Original entry on oeis.org
1, 21, 343, 5145, 74431, 1058841, 14941423, 210003465, 2945813311, 41281739961, 578226834703, 8097153012585, 113373983463391, 1587332657497881, 22223335428043183, 311131443554114505
Offset: 0
-
Table[-7^n+2 14^n,{n,0,20}] (* or *) LinearRecurrence[{21,-98}, {1,21},20] (* Harvey P. Dale, Apr 30 2011 *)
Original entry on oeis.org
1, 42, 1225, 30870, 722701, 16235562, 355888225, 7683656190, 164302593301, 3491636199282, 73902587019625, 1560051480424710, 32874455072382301, 691950889177526202, 14553192008156093425, 305928163614832076430
Offset: 0
Original entry on oeis.org
1, 70, 3185, 120050, 4084101, 130590390, 4012419145, 120031392250, 3525181576301, 102196720335710, 2935410756419505, 83751552660170850, 2377917929557166101, 67273652916778177030, 1898215473677945050265
Offset: 0
A075501
Stirling2 triangle with scaled diagonals (powers of 6).
Original entry on oeis.org
1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1
[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 6 1
* 36 18 1
* 216 252 36 1
* 1296 3240 900 60 1
* 7776 40176 19440 2340 90 1
* 46656 489888 390096 75600 5040 126 1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
-
Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[6^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075503
Stirling2 triangle with scaled diagonals (powers of 8).
Original entry on oeis.org
1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1
[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 8 1
* 64 24 1
* 512 448 48 1
* 4096 7680 1600 80 1
* 32768 126976 46080 4160 120 1
* 262144 2064384 1232896 179200 8960 168 1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
-
Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075506
Shifts one place left under 7th-order binomial transform.
Original entry on oeis.org
1, 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, 235877034446341, 6634976621814472, 197269776623577659, 6177654735731310917, 203136983117907790890, 6994626418539177737803, 251584328242318030774781
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->7^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(7*x)-1)/7), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[7^n BellB[n, 1/7], {n, 0, 20}]
Showing 1-9 of 9 results.
Comments