Original entry on oeis.org
1, 80, 4160, 179200, 6967296, 254607360, 8940421120, 305659904000, 10259284361216, 339910422691840, 11158051230842880, 363834840082022400, 11805930580539867136, 381715961976738283520, 12309283295632755261440
Offset: 0
Original entry on oeis.org
1, 120, 8960, 537600, 28471296, 1393459200, 64678789120, 2892811468800, 125971743113216, 5378780147220480, 226309257119662080, 9416205124868505600, 388454135575280091136, 15919881384987941928960
Offset: 0
Original entry on oeis.org
1, 168, 17024, 1354752, 93499392, 5881430016, 346987429888, 19548208103424, 1064285732077568, 56464495286943744, 2936605030892961792, 150373246607730671616, 7606369972746352328704, 381025640076812853706752
Offset: 0
A076007
Seventh column of triangle A075503.
Original entry on oeis.org
1, 224, 29568, 3010560, 262090752, 20558512128, 1498264109056, 103450998210560, 6857541631868928, 440486826671603712, 27603867324502769664, 1696189816779885772800, 102592999712419955605504
Offset: 0
Original entry on oeis.org
1, 48, 1600, 46080, 1232896, 31653888, 792985600, 19566428160, 478167433216, 11613323132928, 280917704704000, 6777200695050240, 163215697915150336, 3926183399462535168, 94372512377130188800
Offset: 0
A075502
Triangle read by rows: Stirling2 triangle with scaled diagonals (powers of 7).
Original entry on oeis.org
1, 7, 1, 49, 21, 1, 343, 343, 42, 1, 2401, 5145, 1225, 70, 1, 16807, 74431, 30870, 3185, 105, 1, 117649, 1058841, 722701, 120050, 6860, 147, 1, 823543, 14941423, 16235562, 4084101, 360150, 13034, 196, 1
Offset: 1
[1]; [7,1]; [49,21,1]; ...; p(3,x) = x * (49 + 21*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 7 1
* 49 21 1
* 343 343 42 1
* 2401 5145 1225 70 1
* 16807 74431 30870 3185 105 1
* 117649 1058841 722701 120050 6860 147 1
* 823543 14941423 16235562 4084101 360150 13034 196 1
(End)
-
Flatten[Table[7^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(7^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075504
Stirling2 triangle with scaled diagonals (powers of 9).
Original entry on oeis.org
1, 9, 1, 81, 27, 1, 729, 567, 54, 1, 6561, 10935, 2025, 90, 1, 59049, 203391, 65610, 5265, 135, 1, 531441, 3720087, 1974861, 255150, 11340, 189, 1, 4782969, 67493007, 57041334, 11160261, 765450, 21546, 252, 1
Offset: 1
[1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 9 1
* 81 27 1
* 729 567 54 1
* 6561 10935 2025 90 1
* 59049 203391 65610 5265 135 1
* 531441 3720087 1974861 255150 11340 189 1
* 4782969 67493007 57041334 11160261 765450 21546 252 1
(End)
-
Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075507
Shifts one place left under 8th-order binomial transform.
Original entry on oeis.org
1, 1, 9, 89, 1009, 13457, 210105, 3747753, 74565473, 1628999841, 38704241897, 993034281593, 27340167242321, 803154583649329, 25050853217628313, 826165199464341705, 28707262835597618369, 1047731789671001235265, 40053733152627299592137, 1599910554128824794493593
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->8^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(8*x)-1)/8), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[8^n BellB[n, 1/8], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
Showing 1-8 of 8 results.
Comments