A076013
Seventh column of triangle A075504.
Original entry on oeis.org
1, 252, 37422, 4286520, 419818707, 37047106404, 3037410645984, 235940417032320, 17594974122819093, 1271468563282273356, 89638618747098243186, 6196581962116572990600, 421646012618644954061559
Offset: 0
Original entry on oeis.org
1, 27, 567, 10935, 203391, 3720087, 67493007, 1219657095, 21996874431, 396331160247, 7137447668847, 128505439098855, 2313380333315871, 41643387865514007, 749603858371707087, 13493075341822822215
Offset: 0
-
CoefficientList[Series[1/((1-9x)(1-18x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-162},{1,27},30] (* Harvey P. Dale, Dec 01 2015 *)
Original entry on oeis.org
1, 54, 2025, 65610, 1974861, 57041334, 1607609025, 44625100770, 1226874595221, 33521945231214, 912229968911625, 24758714599712730, 670798674525559581, 18153207600055622694, 490886209059873519825
Offset: 0
Original entry on oeis.org
1, 90, 5265, 255150, 11160261, 458810730, 18124795305, 697117731750, 26323112938221, 981154011007170, 36233774365169745, 1329174591745823550, 48521083977375207381, 1764912230785563088410, 64027726517340144702585
Offset: 0
Original entry on oeis.org
1, 135, 11340, 765450, 45605511, 2511058725, 131122437930, 6597627438600, 323216347675221, 15525889656392115, 734898808902814920, 34399620992372494950, 1596504028634137480131, 73607593519321749694305
Offset: 0
Original entry on oeis.org
1, 189, 21546, 1928934, 149767947, 10598527863, 703442942532, 44583546335328, 2730727849782933, 162985193544670497, 9536099260315021758, 549348981049383669882, 31261349005300855653759
Offset: 0
A075503
Stirling2 triangle with scaled diagonals (powers of 8).
Original entry on oeis.org
1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1
[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 8 1
* 64 24 1
* 512 448 48 1
* 4096 7680 1600 80 1
* 32768 126976 46080 4160 120 1
* 262144 2064384 1232896 179200 8960 168 1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
-
Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075508
Shifts one place left under 9th-order binomial transform.
Original entry on oeis.org
1, 1, 10, 109, 1351, 19612, 333451, 6493069, 141264820, 3376695763, 87799365343, 2465959810690, 74353064138749, 2393123710957813, 81812390963020066, 2958191064076428793, 112727516544416978299, 4513118224822056822772, 189305466502867876489519
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->9^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(9*x)-1)/9), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[9^n BellB[n, 1/9], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
A075505
Stirling2 triangle with scaled diagonals (powers of 10).
Original entry on oeis.org
1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
Offset: 1
[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 10 1
* 100 30 1
* 1000 700 60 1
* 10000 15000 2500 100 1
* 100000 310000 90000 6500 150 1
* 1000000 6300000 3010000 350000 14000 210 1
* 10000000 127000000 96600000 17010000 1050000 26600 280 1
(End)
-
Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Showing 1-9 of 9 results.
Comments