cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A076013 Seventh column of triangle A075504.

Original entry on oeis.org

1, 252, 37422, 4286520, 419818707, 37047106404, 3037410645984, 235940417032320, 17594974122819093, 1271468563282273356, 89638618747098243186, 6196581962116572990600, 421646012618644954061559
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..6} (A075513(7,m)*exp(9*(m+1)*x))/6!.

Crossrefs

Programs

Formula

a(n) = A075504(n+7, 7) = (9^n)*S2(n+7, 7) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..6} (A075513(7, m)*((m+1)*9)^n)/6!.
G.f.: 1/Product_{k=1..7} (1 - 9*k*x).
E.g.f.: (d^7/dx^7)(((exp(9*x)-1)/9)^7)/7! = (exp(9*x) - 384*exp(18*x) + 10935*exp(27*x) - 81920*exp(36*x) + 234375*exp(45*x) - 279936*exp(54*x) + 117649*exp(63*x))/6!.

A076008 Second column of triangle A075504.

Original entry on oeis.org

1, 27, 567, 10935, 203391, 3720087, 67493007, 1219657095, 21996874431, 396331160247, 7137447668847, 128505439098855, 2313380333315871, 41643387865514007, 749603858371707087, 13493075341822822215
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..1} (A075513(3,m)*exp(9*(m+1)*x)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-9x)(1-18x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-162},{1,27},30] (* Harvey P. Dale, Dec 01 2015 *)

Formula

a(n) = A075504(n+2, 2) = (9^n)*S2(n+2, 2) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = -9^n + 2*18^n.
G.f.: 1/((1-9*x)*(1-18*x)).
E.g.f.: (d^2/dx^2)(((exp(9*x)-1)/9)^2)/2! = -exp(9*x) + 2*exp(18*x).
a(0)=1, a(1)=27, a(n) = 27*a(n-1) - 162*a(n-2). - Harvey P. Dale, Dec 01 2015

A076009 Third column of triangle A075504.

Original entry on oeis.org

1, 54, 2025, 65610, 1974861, 57041334, 1607609025, 44625100770, 1226874595221, 33521945231214, 912229968911625, 24758714599712730, 670798674525559581, 18153207600055622694, 490886209059873519825
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..2} (A075513(3,m)*exp(9*(m+1)*x))/2!.

Crossrefs

Programs

Formula

a(n) = A075504(n+3, 3) = (9^n)*S2(n+3, 3) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = (9^n - 8*18^n + 9*27^n)/2.
G.f.: 1/Product_{k=1..3} (1 - 9*k*x).
E.g.f.: (d^3/dx^3)(((exp(9*x)-1)/9)^3)/3! = (exp(9*x) - 8*exp(18*x) + 9*exp(27*x))/2!.

A076010 Fourth column of triangle A075504.

Original entry on oeis.org

1, 90, 5265, 255150, 11160261, 458810730, 18124795305, 697117731750, 26323112938221, 981154011007170, 36233774365169745, 1329174591745823550, 48521083977375207381, 1764912230785563088410, 64027726517340144702585
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..3} (A075513(4,m)*exp(9*(m+1)*x))/3!.

Crossrefs

Programs

Formula

a(n) = A075504(n+4, 4) = (9^n)*S2(n+4, 4) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = (-9^n + 24*18^n - 81*27^n + 64*36^n)/3!.
G.f.: 1/Product_{k=1..4} (1 - 9*k*x).
E.g.f.: (d^4/dx^4)(((exp(9*x)-1)/9)^4)/4! = (-exp(9*x) + 24*exp(18*x) - 81*exp(27*x) + 64*exp(36*x))/3!.

A076011 Fifth column of triangle A075504.

Original entry on oeis.org

1, 135, 11340, 765450, 45605511, 2511058725, 131122437930, 6597627438600, 323216347675221, 15525889656392115, 734898808902814920, 34399620992372494950, 1596504028634137480131, 73607593519321749694305
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..4} (A075513(5,m)*exp(9*(m+1)*x))/4!.

Crossrefs

Programs

Formula

a(n) = A075504(n+5, 5) = (9^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..4} (A075513(5, m)*(9*(m+1))^n)/4!.
G.f.: 1/Product_{k=1..5} (1 - 9*k*x).
E.g.f.: (d^5/dx^5)(((exp(9*x)-1)/9)^5)/5! = (exp(9*x) - 64*exp(18*x) + 486*exp(27*x) - 1024*exp(36*x) + 625*exp(45*x))/4!.

A076012 Sixth column of triangle A075504.

Original entry on oeis.org

1, 189, 21546, 1928934, 149767947, 10598527863, 703442942532, 44583546335328, 2730727849782933, 162985193544670497, 9536099260315021758, 549348981049383669882, 31261349005300855653759
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..5} (A075513(6,m)*exp(9*(m+1)*x))/5!.

Crossrefs

Programs

Formula

a(n) = A075504(n+6, 6) = (9^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} (A075513(6, m)*((m+1)*9)^n)/5!.
G.f.: 1/Product_{k=1..6} (1 - 9*k*x).
E.g.f.: (d^6/dx^6)(((exp(9*x)-1)/9)^6)/6! = (-exp(9*x) + 160*exp(18*x) - 2430*exp(27*x) + 10240*exp(36*x) - 15625*exp(45*x) + 7776*exp(54*x))/5!.

A075503 Stirling2 triangle with scaled diagonals (powers of 8).

Original entry on oeis.org

1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(8*z) - 1)*x/8) - 1.

Examples

			[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       8        1
*      64       24        1
*     512      448       48       1
*    4096     7680     1600      80      1
*   32768   126976    46080    4160    120     1
*  262144  2064384  1232896  179200   8960   168   1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
		

Crossrefs

Columns 1-7 are A001018, A060195, A076003-A076007. Row sums are A075507.

Programs

  • Mathematica
    Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (8^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*8)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 8m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-8k*x), m >= 1.
E.g.f. for m-th column: (((exp(8x)-1)/8)^m)/m!, m >= 1.

A075508 Shifts one place left under 9th-order binomial transform.

Original entry on oeis.org

1, 1, 10, 109, 1351, 19612, 333451, 6493069, 141264820, 3376695763, 87799365343, 2465959810690, 74353064138749, 2393123710957813, 81812390963020066, 2958191064076428793, 112727516544416978299, 4513118224822056822772, 189305466502867876489519
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Previous name was: Row sums of triangle A075504 (for n>=1).

Crossrefs

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->9^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
  • Maple
    [seq(factorial(k)*coeftayl(exp((exp(9*x)-1)/9), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Table[9^n BellB[n, 1/9], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)

Formula

a(n) = Sum_{m=0..n} 9^(n-m)*S2(n,m), with S2(n,m) = A008277(n,m) (Stirling2).
E.g.f.: exp((exp(9*x)-1)/9).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 9*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 9^n * n^n * exp(n/LambertW(9*n) - 1/9 - n) / (sqrt(1 + LambertW(9*n)) * LambertW(9*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

A075505 Stirling2 triangle with scaled diagonals (powers of 10).

Original entry on oeis.org

1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(10*z) - 1)*x/10) - 1.

Examples

			[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*        1
*       10         1
*      100        30        1
*     1000       700       60        1
*    10000     15000     2500      100       1
*   100000    310000    90000     6500     150     1
*  1000000   6300000  3010000   350000   14000   210   1
* 10000000 127000000 96600000 17010000 1050000 26600 280 1
(End)
		

Crossrefs

Row sums are A075509.
Cf. A075504.

Programs

  • Mathematica
    Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (10^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*10)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 10m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m} (1-10k*x), m >= 1.
E.g.f. for m-th column: (((exp(10x)-1)/10)^m)/m!, m >= 1.
Showing 1-9 of 9 results.