A075509 Shifts one place left under 10th-order binomial transform.
1, 1, 11, 131, 1761, 27601, 506651, 10674211, 251686881, 6524202561, 183991725451, 5605930566051, 183428104316161, 6409252239788881, 237948848526923611, 9346097294356706051, 386966245108218203201, 16836505067572362863361, 767645305770283165781131
Offset: 0
Crossrefs
Programs
-
Maple
seq(10^n*BellB(n, 1/10), n=0..18); # Peter Luschny, Oct 20 2015
-
Mathematica
Table[10^n BellB[n, 1/10], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
Formula
a(n) = Sum_{m=0..n} 10^(n-m)*S2(n,m) with S2(n,m) = A048993(n,m) (Stirling2).
E.g.f.: exp((exp(10*x)-1)/10).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 10*j*x). - Ilya Gutkovskiy, Mar 21 2018
a(n) ~ 10^n * n^n * exp(n/LambertW(10*n) - 1/10 - n) / (sqrt(1 + LambertW(10*n)) * LambertW(10*n)^n). - Vaclav Kotesovec, Jul 15 2021
Extensions
a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015
Comments