cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075556 Smallest prime p not occurring earlier such that p+n is a square, or 0 if no such p exists.

Original entry on oeis.org

3, 2, 13, 5, 11, 19, 29, 17, 7, 71, 53, 37, 23, 67, 181, 0, 47, 31, 557, 61, 43, 59, 41, 97, 0, 199, 73, 197, 167, 139, 113, 89, 163, 191, 109, 0, 107, 83, 157, 401, 103, 79, 101, 317, 151, 179, 149, 241, 0, 239, 349, 173, 271, 307, 269, 233, 619, 383, 137, 229
Offset: 1

Views

Author

Amarnath Murthy, Sep 23 2002

Keywords

Comments

a(n)=0 or 2*sqrt(n)+1 for square n. Apparently the only cases where it is 2*sqrt(n)+1 are n=1, 4 and 9. - Ralf Stephan, Mar 30 2003, corrected by Robert Israel, Dec 07 2024

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      if issqr(n) then
        r:= sqrt(n);
        if isprime(2*r+1) and not assigned(S[2*r+1]) then R[n]:= 2*r+1; S[2*r+1]:= n else R[n] := 0 fi;
      else
        for k from ceil(sqrt(n)) do
          if not assigned(S[k^2-n]) and isprime(k^2-n) then R[n]:= k^2-n; S[k^2-n]:= n; break fi;
        od
      fi;
    od:
    seq(R[i],i=1..100); # Robert Israel, Dec 06 2024
  • PARI
    v=vector(1000000); for(n=1, 100, f=0; forprime(p=2, 1000000, if(!v[p]&&issquare(p+n), f=p; break)); if(f, print1(f", "); v[f]=1, print1("0, ")));

Extensions

More terms from Ralf Stephan, Mar 30 2003