A075581 Let P(n,X) = Product_{i=1..2n+1} (X - 1/cos(Pi*k/(2n+1))); then P(n,X) is a polynomial with integer coefficients. Sequences gives maximum values of absolute values of coefficients of P(n,X).
1, 4, 16, 80, 448, 2304, 11520, 67584, 372736, 1966080, 11141120, 63504384, 348651520, 1917583360, 11142168576, 62704844800, 343513497600, 1992378286080, 11402534191104, 63709397385216, 361019918516224
Offset: 0
Examples
P(3,X) = X^7 + X^6 - 24*X^5 - 24*X^4 + 80*X^3 + 80*X^2 - 64*X - 64, hence a(3) = 80.