cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076423 Number of iterations of the mapping k -> abs(reverse(lpd(k))-reverse(gpf(k))) to reach zero, or -1 if zero is never reached. lpd(k) is the largest proper divisor and gpf(k) is the greatest prime factor of k.

Original entry on oeis.org

1, 2, 3, 1, 2, 1, 2, 3, 1, 1, 2, 4, 3, 1, 1, 2, 3, 2, 3, 2, 1, 1, 6, 3, 1, 1, 2, 2, 2, 2, 5, 3, 1, 1, 1, 3, 5, 1, 1, 4, 4, 3, 2, 3, 2, 1, 5, 2, 1, 6, 1, 6, 2, 2, 1, 7, 1, 1, 2, 3, 2, 1, 3, 2, 1, 2, 7, 3, 1, 2, 3, 4, 4, 1, 6, 4, 1, 2, 4, 2, 2, 1, 6, 4, 1, 1, 1, 2, 4, 2, 1, 4, 1, 1, 1, 3, 3, 2, 2, 1, 2, 8, 3, 2, 2
Offset: 1

Views

Author

Klaus Brockhaus, Oct 11 2002

Keywords

Comments

See A076425 for numbers such that zero is never reached, A076424 for the smallest number that needs n iterations to reach zero, A076426 for fixed points of the mapping.

Examples

			For n = 13: lpd(13) = 1, gpf(13)=13, abs(reverse(1)-reverse(13)) = 30; lpd(30) = 15, gpf(30) = 5, abs(reverse(15)-reverse(5)) = 46; lpd(46) = 23, gpf(46)=23, abs(reverse(23)-reverse(23)) = 0. Three iterations to reach zero, so a(13) = 3.
		

Crossrefs

Programs

  • PARI
    {stop=20; for(n=1,105,c=1; b=1; k=n; while(b&&c<=stop,w=divisors(k); s=matsize(w)[2]-1; z=if(s>0,w[s],1); p=0; while(z>0,d=divrem(z,10); z=d[1]; p=10*p+d[2]); z=if(k==1,1,vecmax(component(factor(k),1))); q=0; while(z>0,d=divrem(z,10); z=d[1]; q=10*q+d[2]); k=abs(p-q); if(k>0,c++,b=0)); print1(if(c>stop,-1,c),","))}

A074347 Smallest number requiring n steps to reach 0 when iterating the function: f(n)=abs(lpd(n)-Lpf(n)), where lpd(n) is the largest proper divisor of n and Lpf(n) is the largest prime factor of n.

Original entry on oeis.org

1, 2, 3, 12, 13, 52, 53, 131, 271, 811, 1601, 2711, 8111, 13997, 34589, 74551, 147773, 310567, 621227, 1230343, 2627759, 4921373, 10741931, 24965191, 45887291, 111477631, 183638843, 394195667, 788380493, 1576798931
Offset: 1

Views

Author

Jason Earls, Sep 23 2002

Keywords

Comments

2*10^9 < a(31) <= 2938669883. a(32) <= 7511549827. a(33) <= 11754740251. a(34) <= 30050593523. - Donovan Johnson, Dec 22 2010

Crossrefs

Cf. A075660.

Programs

  • PARI
    {m=25; z=11000000; v=listcreate(m); for(i=1,m,listinsert(v,-1,i)); for(n=1,z,c=1; b=1; k=n; while(b&&c<=m,d=divisors(k); i=matsize(d)[2]-1; p=if(i>0,d[i],1); q=if(k==1,1,vecmax(component(factor(k),1))); a=abs(p-q); if(a==0,b=0,k=a; c++)); if(a==0,if(v[c]<0,v[c]=n; print1([c,n])))); print(); for(i=1,m,print1(v[i],","))}

Extensions

Four more terms from Klaus Brockhaus, Oct 01 2002
a(24)-a(30) from Donovan Johnson, Dec 22 2010
Showing 1-2 of 2 results.