A075668 Sum of next n 7th powers.
1, 2315, 374445, 17703664, 394340375, 5265954441, 48574262275, 338837482880, 1900477947429, 8950536157375, 36536761179281, 132397570996560, 433806511149115, 1303971065324669, 3637715990646375, 9507513902672896, 23461050872397545, 55013865421504275
Offset: 1
Examples
a(1) = 1^7 = 1; a(2) = 2^7 + 3^7 = 2315; a(3) = 4^7 + 5^7 + 6^7 = 374445; a(4) = 7^7 + 8^7 + 9^7 + 10^7 = 17703664.
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Crossrefs
Programs
-
Mathematica
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=7; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Formula
a(n) = Sum_{i=n*(n-1)/2+1..n*(n-1)/2+n} i^7.
a(n) = (3*n^15 + 42*n^13 + 168*n^11 + 206*n^9 - 11*n^7 - 56*n^5 + 32*n^3)/384. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^14 +2299*x^13 +337525*x^12 +11989784*x^11 +154720571*x^10 +875467853*x^9 +2397170367*x^8 +3336829200*x^7 +2397170367*x^6 +875467853*x^5 +154720571*x^4 +11989784*x^3 +337525*x^2 +2299*x +1)/(x-1)^16. - Colin Barker, Jul 22 2012