A075684 For odd numbers 2n-1, the maximum number produced by iterating the reduced Collatz function R defined as R(k) = (3k+1)/2^r, with r as large as possible.
1, 5, 5, 17, 17, 17, 13, 53, 17, 29, 21, 53, 29, 3077, 29, 3077, 33, 53, 37, 101, 3077, 65, 45, 3077, 49, 77, 53, 3077, 65, 101, 61, 3077, 65, 101, 69, 3077, 3077, 113, 77, 269, 81, 3077, 85, 197, 101, 3077, 93, 3077, 3077, 149, 101, 3077, 269, 3077, 3077, 3077
Offset: 1
Examples
a(4) = 17 because 7 is the fourth odd number and 17 is the largest number in the iteration: R(7)=11, R(11)=17, R(17)=13, R(13)=5, R(5)=1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[m=n; maxK=n; If[n>1, While[m=nextOddK[m]; maxK=Max[m, maxK]; m!=1]]; maxK, {n, 1, 200, 2}]
Comments