cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075690 a(n) = (n-1)*(n-2)^4 - A028294(n), for n > 4, with a(1) = a(2) = 0, a(3) = 2, and a(4) = 48.

Original entry on oeis.org

0, 0, 2, 48, 304, 999, 2393, 4791, 8542, 14039, 21719, 32063, 45596, 62887, 84549, 111239, 143658, 182551, 228707, 282959, 346184, 419303, 503281, 599127, 707894, 830679, 968623, 1122911, 1294772, 1485479, 1696349, 1928743, 2184066, 2463767
Offset: 1

Views

Author

Jon Perry, Oct 12 2002

Keywords

Crossrefs

Cf. A028294.

Programs

  • Magma
    [0,0,2,48] cat [(11*n^4+19*n^3-632*n^2+2012*n-1686)/6: n in [4..50]]; // G. C. Greubel, Jan 03 2024
    
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {0,0,2,48,304,999,2393,4791,8542}, 50] (* G. C. Greubel, Jan 03 2024 *)
  • SageMath
    [0,0,2,48] + [(11*n^4+19*n^3-632*n^2+2012*n-1686)/6 for n in range(4,51)] # G. C. Greubel, Jan 03 2024

Formula

From G. C. Greubel, Jan 03 2024: (Start)
a(n) = (n-1)*(n-2)^4 - A028294(n) + 46*[n=1] - 23*[n=2] - 9*[n=3] + [n=4].
a(n) = (11*n^4 + 19*n^3 - 632*n^2 + 2012*n - 1686)/6 + 46*[n=1] - 23*[n=2] - 9*[n=3] + [n=4].
G.f.: x^3*(2 + 38*x + 84*x^2 - 61*x^3 - 32*x^4 + 14*x^5 - x^6)/(1-x)^5.
E.g.f.: (1/6)*(-1686 + 1410*x - 498*x^2 + 85*x^3 + 11*x^4)*exp(x) + 281 + 46*x - 23*x^2/2 - 9*x^3/3! + x^4/4!. (End)

Extensions

More terms from David Wasserman, Jan 22 2005
Name clarified by G. C. Greubel, Jan 03 2024