cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075760 Nontrivial binomial coefficients which are perfect powers (A001597).

Original entry on oeis.org

36, 1225, 19600, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600
Offset: 1

Views

Author

Robert G. Wilson v, Oct 08 2002

Keywords

Comments

Triangular-square numbers (A001110) are a subset, except for 0 and 1.
"For C(n,k) k>=4 and any l>=2 no solutions exist and this is what Erdos proved by an ingenious argument. ... C(50, 3) = 140^2 is the only solution for k = 3, l=2." page 13 of Aigner and Ziegler.

References

  • Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000, Chapter 3, "Binomial coefficients are (almost) never powers," pages 13-16.

Crossrefs

Cf. A001110.

Programs

  • Mathematica
    f[n_] := Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]]; a = {}; Do[ If[ f[n(n - 1)/2] > 1, a = Append[a, Binomial[n, 2]]]; If[ f[n(n - 1)*(n - 2)/6] > 1, a = Append[a, Binomial[n, 3]]], {n, 5, 1500000}]

Extensions

a(10)-a(12) from Sean A. Irvine, Mar 05 2025