cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075764 Schroeder pseudoprimes: Composites k that divide the k-th Schroeder number A001003(k-1).

Original entry on oeis.org

105, 261, 301, 693, 1605, 1755, 2151, 2905, 2907, 3393, 3875, 4641, 4833, 5005, 5655, 6279, 6913, 7161, 8883, 9405, 10899, 11025, 11289, 15687, 17199, 19203, 22275, 27387, 36855, 37791, 50007, 50463, 53493, 54891, 55209, 55755, 63327, 64337
Offset: 1

Views

Author

Benoit Cloitre, Oct 09 2002

Keywords

Examples

			105 is a term because A001003(105) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
105 is a term because A001003(104) = 15646506064359350392347086201481965698808674470977505246623827696393838448345 which is divisible by 105.
		

Crossrefs

Intersection of A002808 and A075763.

Programs

  • Mathematica
    s = {}; k1 = k2 = 1; Do[k3 = ((6*n - 9)*k2 - (n - 3)*k1)/n; If[CompositeQ[n] && Divisible[k3, n], AppendTo[s, n]]; k1 = k2; k2 = k3, {n, 3, 10^5}]; s (* Amiram Eldar, Jun 28 2022 *)
  • PARI
    x1 = 1; x2 = 1; for (n = 3, 100000, x = (3*(2*n - 3)*x1 - (n - 3)*x2)/n; if (!isprime(n), if (!(x%n), print(n))); x2 = x1; x1 = x); \\ David Wasserman, Feb 23 2005

Extensions

More terms from David Wasserman, Feb 23 2005