A075769 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for indecomposable Wallis pairs with x < y (ordered by values of x).
5, 407, 489, 749, 878, 1451, 1102, 1208, 1943, 1528, 1809, 1605, 2557, 3097, 3730, 4829, 6061, 4880, 6341, 6172, 7715, 7067, 10071, 17441, 11020, 17531, 14397, 17441, 14001, 24161, 24613, 14288, 14795, 20396, 25495, 22577, 19784, 15836, 19795, 27713, 30959
Offset: 1
Examples
(4,5) is a Wallis pair since sigma(16) = sigma(25) = 31.
References
- I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
xmax = 20000; sigma[n_] := sigma[n] = DivisorSigma[1, n]; WallisQ[{x_, y_}] := sigma[x^2] == sigma[y^2]; pairs = Reap[Do[Do[ If[WallisQ[{x, y}] && ! (GCD[x, y] != 1 && WallisQ[{x, y}/GCD[x, y]]), Print[{x, y}, " is a Wallis pair to be tested for indecomposability"]; Sow[{x, y}]], {y, x + 1, 2.2*x}], {x, 1, xmax}]][[2, 1]]; indecomposableQ[{x0_, y0_}] := (pf = pairs // Flatten; sx = Intersection[Most@Divisors[x0], pf]; sy = Intersection[Most@Divisors[y0], pf]; xy = Outer[List, sx, sy] // Flatten[#, 1] &; sel = Select[xy, WallisQ[#] && WallisQ[{x0, y0}/#] &]; sel == {}); Select[pairs, indecomposableQ][[All, 2]] (* Jean-François Alcover, Sep 26 2013 *)
Extensions
Corrected and extended by Klaus Brockhaus, Oct 22 2002
19795 from Jean-François Alcover, Dec 28 2012
Offset corrected by Donovan Johnson, Sep 18 2013
Comments