A075772 Difference between the n-th perfect power and the closest perfect power.
3, 3, 1, 1, 7, 2, 2, 4, 4, 13, 15, 17, 19, 4, 3, 3, 16, 25, 20, 9, 9, 13, 13, 33, 19, 18, 18, 39, 41, 28, 17, 17, 47, 49, 51, 53, 55, 57, 59, 39, 24, 24, 65, 67, 69, 35, 35, 38, 75, 77, 79, 47, 36, 36, 85, 87, 23, 23, 68, 10, 10, 12, 95, 97, 99, 101, 40, 40, 65, 107, 100, 11, 11
Offset: 1
Keywords
Examples
The perfect powers are 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, etc. The 7th is 27. This is 2 larger than the 6th (25) and 5 smaller than the 8th (32). So a(7)=2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
pp = {-2, 1}; Do[ If[ !PrimeQ[n] && Apply[GCD, Last[ Transpose[ FactorInteger[n]]]] > 1, pp = Append[pp, n]], {n, 2, 10^4}]; Table[ Min[pp[[n + 1]] - pp[[n]], pp[[n + 2]] - pp[[n + 1]]], {n, 1, 75}] perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;Join[{3,3},Min[ Differences[ #]]&/@Partition[Select[Range[5000],perfPQ],3,1]] (* Harvey P. Dale, May 04 2021 *)
-
PARI
for(n=L=3+P=-2,99,ispower(n)&&print1(min(-P+P=L,-L+L=n)",")) \\ Note: ispower(1)=0. - M. F. Hasler, May 08 2018
-
Python
from sympy import mobius, integer_nthroot def A075772(n): if n == 1: return 3 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax a = bisection(f,n-1,n-1) b = bisection(lambda x:f(x)+1,a,a) return min(b-a,bisection(lambda x:f(x)+2,b,b)-b) # Chai Wah Wu, Sep 09 2024
Formula
a(n) = min A053289({n, n-1}\{0}), where A053289(n) = A001597(n+1) - A001597(n). - M. F. Hasler, May 08 2018
Extensions
More terms from Robert G. Wilson v and John W. Layman, Oct 10 2002
Comments