cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075800 Palindromic numbers which are products of an odd number of distinct primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 66, 101, 131, 151, 181, 191, 222, 282, 313, 353, 373, 383, 434, 474, 494, 555, 595, 606, 646, 727, 757, 777, 787, 797, 919, 929, 969, 1001, 1221, 1551, 1771, 2222, 2882, 3333, 3553, 4334, 4994, 5335, 5555, 5665, 5885, 5995, 6006, 6226, 6446, 6886
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			191 is palindromic and prime, 222=2*3*37 is palindromic and a product of 3 distinct primes.
		

Crossrefs

Cf. A002385, A069217, A032350, A030059, A075799, A075806 (first differences).

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[mobius](n)=-1; end; a := []; for n from 1 to 7000 do if test(n) then a := [op(a),n]; end; od; a;
  • Mathematica
    Select[Range[10000], PalindromeQ[#] && MoebiusMu[#] == -1 &] (* Paolo Xausa, Mar 10 2025 *)

Extensions

Edited by Dean Hickerson, Oct 21 2002

A075805 Differences between adjacent palindromic numbers which are products of an even number of distinct primes.

Original entry on oeis.org

5, 16, 11, 22, 22, 34, 30, 20, 41, 60, 41, 20, 70, 61, 51, 10, 20, 10, 20, 61, 81, 10, 20, 30, 51, 20, 20, 20, 20, 41, 10, 10, 20, 10, 122, 330, 220, 330, 11, 440, 561, 110, 110, 220, 440, 891, 231, 110, 1551, 451, 330, 550, 1122, 110, 220, 552, 100, 300, 400, 100
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			a(1)=6-1=5, a(2)=22-6=16.
		

Crossrefs

Cf. A037010.
First differences of A075799.

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[mobius](n)=1; end; s := []; for n from 1 to 11000 do if test(n) then s := [op(s),n]; end; od; a := [op(2..-1,s)-op(1..-2,s)];
  • Mathematica
    Differences[Select[Range[10000], PalindromeQ[#] && MoebiusMu[#] == 1 &]] (* Paolo Xausa, Mar 10 2025 *)

Extensions

Edited by Dean Hickerson, Oct 21 2002
Showing 1-2 of 2 results.