A076049 Numbers k such that the sum of the k-th triangular number and (k+2)-nd triangular number is a triangular number.
0, 3, 8, 25, 54, 153, 322, 899, 1884, 5247, 10988, 30589, 64050, 178293, 373318, 1039175, 2175864, 6056763, 12681872, 35301409, 73915374, 205751697, 430810378, 1199208779, 2510946900, 6989500983, 14634871028, 40737797125
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
Formula
Let b(n) = A001109(n). Then we have a pair of recursion formulas:
a(2n+2) = 2*a(2n+1) - a(2n) + 2*b(n+1);
a(2n+3) = 2*a(2n+2) - a(2n+1) + 2*b(n+2).
G.f.: x*(3 + 5*x - x^2 - x^3)/((1-x)*(1 - 6*x^2 + x^4)).
a(n) = -3 + (1/8)*(-1^n)((7 + 5*sqrt(2))*(-1 - sqrt(2))^n + (7 - 5*sqrt(2))*(-1 + sqrt(2))^n - (1 + sqrt(2))^n - (1 - sqrt(2))^n).
Extensions
Edited by Jon E. Schoenfield, Sep 02 2019
Comments