cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076049 Numbers k such that the sum of the k-th triangular number and (k+2)-nd triangular number is a triangular number.

Original entry on oeis.org

0, 3, 8, 25, 54, 153, 322, 899, 1884, 5247, 10988, 30589, 64050, 178293, 373318, 1039175, 2175864, 6056763, 12681872, 35301409, 73915374, 205751697, 430810378, 1199208779, 2510946900, 6989500983, 14634871028, 40737797125
Offset: 1

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 29 2002

Keywords

Comments

T(a(n)) + T(a(n)+2) = A069017(n+1) where T(k) = k*(k+1)/2.

Crossrefs

Formula

Let b(n) = A001109(n). Then we have a pair of recursion formulas:
a(2n+2) = 2*a(2n+1) - a(2n) + 2*b(n+1);
a(2n+3) = 2*a(2n+2) - a(2n+1) + 2*b(n+2).
G.f.: x*(3 + 5*x - x^2 - x^3)/((1-x)*(1 - 6*x^2 + x^4)).
a(n) = -3 + (1/8)*(-1^n)((7 + 5*sqrt(2))*(-1 - sqrt(2))^n + (7 - 5*sqrt(2))*(-1 + sqrt(2))^n - (1 + sqrt(2))^n - (1 - sqrt(2))^n).

Extensions

Edited by Jon E. Schoenfield, Sep 02 2019