cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076708 Numbers n such that triangular numbers T(n) and T(n+1) sum to another triangular number (that is also a perfect square).

Original entry on oeis.org

0, 5, 34, 203, 1188, 6929, 40390, 235415, 1372104, 7997213, 46611178, 271669859, 1583407980, 9228778025, 53789260174, 313506783023, 1827251437968, 10650001844789, 62072759630770, 361786555939835, 2108646576008244, 12290092900109633, 71631910824649558
Offset: 1

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002

Keywords

Comments

From T(k)+T(k+1) = (k*(k+1)+(k+1)*(k+2))/2 = (k+1)^2 any two consecutive triangular numbers sum to a square, the above sequence gives the sums that are also triangular. The units digit cycles through 0, 5, 4, 3, 8, 9, 0, 5, ...
Let P(b,e) be the polynomial 1+4*b+4*b^2+4*e+4*e^2. It appears that sequences A076708 and A076049 are special cases of the sequence of integers b such that P(b,b+n) is a perfect square. A076708 and A076049 for example are respectively the sequences of b's such that P(b,b+1) and P(b,b+2) are perfect squares. In fact it appears to be true that the sequence of integers b such that P(b,b+n) is a perfect square has the property that t(b)+t(b+n) is a triangular number. I have not had time to prove this but I do have evidence produced by Mathematica to support the assertion. - Robert Phillips (bobanne(AT)bellsouth.net), Sep 04 2009; corrected Sep 08 2009

Examples

			a(1) = (sqrt(2)*((3+2*sqrt(2))^2-(3-2*sqrt(2))^2)-8)/8 = (sqrt(2)*(9+12*sqrt(2)+8-9+12*sqrt(2)-8)-8)/8 = (sqrt(2)*24*sqrt(2)-8)/8 = (48-8)/8 = 40/8 = 5.
T(5) + T(6) = 15 + 21 = 36 = T(8).
		

Crossrefs

Programs

  • Mathematica
    Table[((3 + 2 Sqrt[2])^n - (3 - 2 Sqrt[2])^n)/(4 Sqrt[2]) - 1, {n, 1, 20}] (* Zerinvary Lajos, Jul 14 2009 *)
  • PARI
    concat(0, Vec(x^2*(x-5)/((x-1)*(x^2-6*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

Recursion: a(n+2) = 6*a(n+1)-a(n)+4, with a(0)=0 and a(1)=5.
G.f.: (5*x^2-x^3)/((1-x)*(1-6*x+x^2)).
Closed form: a(n)= ( sqrt(2)*( (3+2*sqrt(2))^(n+1) - (3-2*sqrt(2))^(n+1) )-8 )/8.
Also, if the entries in A001109 are denoted by b(n) then a(n) = b(n+1)-1.
a(n) = sqrt(A001110(n)) - 1. - Ivan N. Ianakiev, May 03 2014

A239969 Least positive k such that triangular(n) + triangular(n+k) is a triangular number (A000217), or -1 if no such k exists.

Original entry on oeis.org

2, 5, 1, 3, 20, 2, 4, 16, 3, 5, 31, 4, 6, 119, 5, 7, 16, 6, 8, 103, 7, 9, 2, 8, 10, 26, 9, 11, 464, 10, 12, 1, 11, 13, 313, 12, 5, 58, 13, 15, 37, 14, 3, 493, 15, 17, 31, 16, 18, 47, 17, 2, 79, 9, 20, 796, 19, 21, 883, 20, 22, 89, 4, 23, 58, 22, 24, 100, 23, 25, 1276
Offset: 3

Views

Author

Alex Ratushnyak, Mar 30 2014

Keywords

Comments

In other words, smallest solution k>0 to 4*k^2 + 8*(k + 1)*n + 8*n^2 + 4*k + 1 = m^2. - Ralf Stephan, Apr 01 2014

Examples

			a(3) = 2 because triangular(3)+triangular(3+2)=21 is a triangular number.
a(5) = 1 because triangular(5)+triangular(5+1)=36 is a triangular number.
In other words, k=a(3)=2 is the smallest positive solution to 4*k^2 + 28*k + 97 = m^2, and k=a(5)=1 is the smallest positive solution to 4*k^2 + 44*k + 241 = m^2.
		

Crossrefs

Programs

  • Haskell
    a239969 n = head [k | k <- [1..],
                          a010054 (a000217 n + a000217 (n + k)) == 1]
    -- Reinhard Zumkeller, Apr 03 2014
  • PARI
    triangular(n) = n*(n+1)/2;
    is_triangular(n) = issquare(8*n+1);
    s=[]; for(n=3, 100, k=1; while(!is_triangular(triangular(n)+triangular(n+k)), k++); s=concat(s, k)); s \\ Colin Barker, Mar 31 2014
    

Extensions

First PROG corrected by Colin Barker, Apr 04 2014
Showing 1-2 of 2 results.