cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076051 Sum of product of odd numbers <= n and the product of even numbers <= n.

Original entry on oeis.org

2, 3, 5, 11, 23, 63, 153, 489, 1329, 4785, 14235, 56475, 181215, 780255, 2672145, 12348945, 44781345, 220253985, 840523635, 4370620275, 17465201775, 95498916975, 397983749625, 2278224696825, 9867844134225, 58917607974225
Offset: 1

Views

Author

Emrehan Halici (emrehan(AT)halici.com.tr), Oct 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A037223[n_] := 2^(Floor[n/2])*(Floor[n/2])!; Table[A037223[n] + n!/A037223[n] , {n,1,50}] (* G. C. Greubel, May 23 2017 *)
    With[{nn = 25}, CoefficientList[Series[1 + x + (1 + x + x^2) *(Exp[x^2/2] *(1 + Sqrt[Pi/2]*Erf[x/Sqrt[2]])), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 25 2017 *)
  • PARI
    for(n=1, 50, print1(2^(floor(n/2))*(floor(n/2))! + n!/(2^(floor(n/2))*(floor(n/2))!), ", ")) \\ G. C. Greubel, May 23 2017

Formula

a(n) = o(n)+ e(n) where; o(n)=the product of odd numbers from 1 to n e(n)=the product of even numbers from 2 to n.
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(n) = A060696(n+1).
a(n) = A037223(n) + abs(A055634(n)).
a(n) = A037223(n) + n! / A037223(n), where A037223(n) = 2^floor(n/2) * floor(n/2)!, for n>=2.
a(1)=2, a(2)=3, a(3)=5, a(n) = (n-1)*a(n-2) + (n-2)!! for n >= 4.
E.g.f.: 1 + x + (1+x+x^2)*(exp(x^2/2)*(1+sqrt(Pi/2)*erf(x/sqrt(2)))), where erf denotes the error function. (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(1) corrected by G. C. Greubel, May 23 2017