cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076109 Least positive k such that k^n is the sum of n consecutive integers, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 3, 0, 5, 3, 7, 0, 3, 5, 11, 0, 13, 7, 15, 0, 17, 3, 19, 0, 21, 11, 23, 0, 5, 13, 3, 0, 29, 15, 31, 0, 33, 17, 35, 0, 37, 19, 39, 0, 41, 21, 43, 0, 15, 23, 47, 0, 7, 5, 51, 0, 53, 3, 55, 0, 57, 29, 59, 0, 61, 31, 21, 0, 65, 33, 67, 0, 69, 35, 71, 0, 73, 37, 15, 0, 77, 39, 79, 0
Offset: 1

Views

Author

Amarnath Murthy, Oct 08 2002

Keywords

Comments

No k exists precisely when n == 0 (mod 4).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, Boole[e == 1], p]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    { A076109(n) = if(n%4==0,return(0)); if(n%2==0,n\=2); vecprod(factorint(n)[,1]); } \\ Max Alekseyev, Jun 10 2005

Formula

a(n) = (n*A076107(n)+(n^2-n)/2)^(1/n) for n != 0 (mod 4).
a(n) = A076108^(1/n).
a(p) = p if p is a prime.
Multiplicative with a(2^1) = 1; a(2^e) = 0 if e >= 2; a(p^e) = p if p >= 3. - David W. Wilson, Jun 10 2005
a(n) = A007947(n) if n == 1 (mod 2); A007947(n/2) if n == 2 (mod 4); 0 if n == 0 (mod 4). - David W. Wilson, Jun 10 2005
a(4k) = 0; otherwise a(n) = p1*...*pm where p1, ..., pm are all distinct odd primes dividing n. - Max Alekseyev, Jun 10 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/8) * Product_{p prime} (1 - 1/(p*(p+1))) = (3/8) * A065463 = 0.264165... . - Amiram Eldar, Oct 28 2022

Extensions

Corrected and extended by Ralf Stephan, Mar 30 2003
More terms from Max Alekseyev, Jun 10 2005