A076116 Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists.
1, 13, 8, 0, 23, 2, 46, 0, 20, 8, 116, 0, 163, 18, 218, 6, 281, 32, 352, 0, 431, 50, 518, 0, 28, 72, 14, 0, 827, 98, 946, 0, 1073, 128, 1208, 0, 1351, 162, 1502, 0, 1661, 200, 1828, 0, 53, 242, 2186, 98, 32, 43, 2576, 0, 2783, 36, 2998, 0, 3221, 392, 3452, 0, 3691, 450
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local y,F,t,k,v; if n::odd then F:= ifactors(n)[2]; y:= mul(t[1]^ceil(t[2]/3),t=F); k:= 1+floor((n*(n-1)/2)^(1/3)/y); (k*y)^3/n - (n-1)/2; else v:= padic:-ordp(n,2); if v mod 3 <> 1 then return 0 fi; F:= ifactors(n/2^v)[2]; y:= mul(t[1]^ceil(t[2]/3),t=F)*2^((v-1)/3); k:= 1 + floor((n*(n-1)/2)^(1/3)/y); if k::even then k:= k+1 fi; (k*y)^3/n - (n-1)/2; fi end proc: map(f, [$1..100]); # Robert Israel, Nov 15 2023
-
Mathematica
f[n_] := Module[{y, F, t, k, v}, If[OddQ[n], F = FactorInteger[n]; y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]; k = 1 + Floor[(n*(n-1)/2)^(1/3)/y]; (k*y)^3/n - (n-1)/2 , v = IntegerExponent[n, 2]; If[Mod[v, 3] != 1, Return[0]]; F = FactorInteger[n/2^v]; y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]*2^((v-1)/3); k = 1 + Floor[(n*(n-1)/2)^(1/3)/y]; If[EvenQ[k], k = k+1]; (k*y)^3/n - (n-1)/2]]; Map[f, Range[100]] (* Jean-François Alcover, Jul 09 2024, after Robert Israel *)
Formula
From Robert Israel, Nov 15 2023: (Start)
If n is odd, then a(n) is the least positive integer of the form (k*A019555(n))^3/n - (n-1)/2 where k is an integer.
Extensions
More terms from David Wasserman, Apr 02 2005