cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076213 2*a(n)-1 = sign(A005132(n+1)-A005132(n)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Benoit Cloitre, Nov 03 2002

Keywords

Comments

Characteristic function of A057165 - 1. - M. F. Hasler, Jun 03 2009

Formula

Conjecture: let s(n)=sum(k=1, n, a(k)), then lim n ->infinity s(n)/n = 1/2; for any n, 2*s(n) > n; let v(n)=2*s(n)-n, then v(n)/log(n) is bounded and sum(k=1, n, v(k)) is asymptotic to c*n*log(n) with 1 < c < 3/2.
a(n) = 1-A160351(n+1) = (A160357(n)+1)/2. - M. F. Hasler, Jun 03 2009

Extensions

Added initial value a(0)=1. - M. F. Hasler, Jun 03 2009