A118076 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>0.
1, 84, 435708, 986076, 1441188, 6066396, 18735444, 78863148
Offset: 1
Keywords
Examples
n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
Crossrefs
Cf. A076230 (n divides sigma_2(n) and sigma_4(n)).
Programs
-
Mathematica
t={}; Do[If[Mod[DivisorSigma[2,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,2,20}]; t
Comments