A076276 Number of + signs needed to write the partitions of n (A000041) as sums.
0, 0, 1, 3, 7, 13, 24, 39, 64, 98, 150, 219, 322, 455, 645, 892, 1232, 1668, 2259, 3008, 4003, 5260, 6897, 8951, 11599, 14893, 19086, 24284, 30827, 38888, 48959, 61293, 76578, 95223, 118152, 145993, 180037, 221175, 271186, 331402, 404208, 491521
Offset: 0
Keywords
Examples
4=1+3=2+2=1+1+2=1+1+1+1, 7 + signs are needed, so a(4)=7.
Programs
-
Mathematica
a[0]=0; a[n_] := Sum[DivisorSigma[0, k]PartitionsP[n-k], {k, 1, n}]-PartitionsP[n]
Formula
a(n) = (Sum_{k=1..n} tau(k)*numbpart(n-k))-numbpart(n) = A006128(n)-A000041(n), n>0. - Vladeta Jovovic, Oct 06 2002
G.f.: sum(n>=1, (n-1) * x^n / prod(k=1,n, 1-x^k ) ). - Joerg Arndt, Apr 17 2011
Comments