cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076276 Number of + signs needed to write the partitions of n (A000041) as sums.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 24, 39, 64, 98, 150, 219, 322, 455, 645, 892, 1232, 1668, 2259, 3008, 4003, 5260, 6897, 8951, 11599, 14893, 19086, 24284, 30827, 38888, 48959, 61293, 76578, 95223, 118152, 145993, 180037, 221175, 271186, 331402, 404208, 491521
Offset: 0

Views

Author

Floor van Lamoen, Oct 04 2002

Keywords

Comments

Also, total number of parts in all partitions of n-1 plus the number of emergent parts of n, if n >= 1. Also, sum of largest parts of all partitions of n-1 plus the number of emergent parts of n, if n >= 1. - Omar E. Pol, Oct 30 2011
Also total number of parts that are not the largest part in all partitions of n. - Omar E. Pol, Apr 30 2012
Empirical: For n > 1, a(n) is the sum of the entries in the second column of the lower-triangular matrix of coefficients giving the expansion of degree-n complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			4=1+3=2+2=1+1+2=1+1+1+1, 7 + signs are needed, so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_] := Sum[DivisorSigma[0, k]PartitionsP[n-k], {k, 1, n}]-PartitionsP[n]

Formula

a(n) = (Sum_{k=1..n} tau(k)*numbpart(n-k))-numbpart(n) = A006128(n)-A000041(n), n>0. - Vladeta Jovovic, Oct 06 2002
G.f.: sum(n>=1, (n-1) * x^n / prod(k=1,n, 1-x^k ) ). - Joerg Arndt, Apr 17 2011
a(n) = A006128(n-1) + A182699(n), n >= 1. - Omar E. Pol, Oct 30 2011

Extensions

More terms from Vladeta Jovovic, Robert G. Wilson v, Dean Hickerson and Don Reble, Oct 06 2002