cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076303 Engel expansion of exp(Pi * sqrt(163)) - 262537412640768743.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 19, 1169, 21384, 520409, 2559029, 2922819, 3228884, 6972029, 18244654, 24601850, 146539491, 620041946, 865572355, 1298955860, 3005000777, 5169423076, 6941400197, 9965578146, 26183561695, 39614218376
Offset: 1

Views

Author

Robert G. Wilson v, Mar 03 2003

Keywords

Comments

262537412640768743.9999999999992500... is Ramanujan's constant which is extremely close to an integer. The Engel expansion of the fractional part begins with 40 terms 2.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1 &, Floor[ A ]], First@ Transpose @ NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]] #[[ 2 ]] - 1 ]], Expand[ #[[ 1 ]] #[[ 2 ]] - 1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1 ]]; EngelExp[E^(Pi*Sqrt[163]) - 262537412640768743, 52]
  • PARI
    default(realprecision, 100000); r=exp(Pi*sqrt(163))-262537412640768743; for(i=1, 100, s=r*ceil(1/r)-1; print1(ceil(1/r), ", "); r=s); /* Georg Fischer, Nov 21 2020 */

Extensions

More terms from Georg Fischer, Nov 21 2020