cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076337 Riesel numbers: odd numbers n such that for all k >= 1 the numbers n*2^k - 1 are composite.

Original entry on oeis.org

509203
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2002

Keywords

Comments

509203 has been proved to be a member of the sequence, and is conjectured to be the smallest member. However, as of 2009, there are still several smaller numbers which are candidates and have not yet been ruled out (see links).
Riesel numbers are proved by exhibiting a periodic sequence p of prime divisors with p(k) | n*2^k-1 and disproved by finding prime n*2^k-1. It is conjectured that numbers that cannot be proved Riesel in this way are non-Riesel. However, some numbers resist both proof and disproof.
Others conjecture the opposite: that there are infinitely many Riesel numbers that do not arise from a covering system, see A101036. The word "odd" is needed in the definition because otherwise for any term n, all numbers n*2^m, m >= 1, would also be Riesel numbers, but we don't want them in this sequence (as is manifest from A101036). Since 1 and 3 obviously are not in this sequence, for any n in this sequence n-1 is an even number > 2 and therefore composite, so one could replace "k >= 1" equivalently by "k >= 0". - M. F. Hasler, Aug 20 2020
Named after the Swedish mathematician Hans Ivar Riesel (1929-2014). - Amiram Eldar, Apr 02 2022

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section B21.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed., 1989, p. 282.

Crossrefs

Main sequences for Riesel problem: A040081, A046069, A050412, A052333, A076337, A101036, A108129.

Extensions

Normally we require at least four terms but we will make an exception for this sequence in view of its importance. - N. J. A. Sloane, Nov 07 2002. See A101036 for the most likely extension.
Edited by N. J. A. Sloane, Nov 13 2009
Definition corrected ("odd" added) by M. F. Hasler, Aug 23 2020