A076362 Smallest x such that A061498(x)=n: least number in dRRS of which n distinct term occur.
1, 3, 9, 15, 385, 105, 3003, 1155, 51051, 36465, 15015, 692835, 440895, 255255, 10140585, 8580495, 4849845
Offset: 0
Examples
n=5, a(5)=105 because in dRRS[105]={1,2,4,3,2,....,1,5,...,2,1} five distinct terms[=consecutive residue-differences] occur, namely: {1,2,3,4,5}.
Programs
-
Mathematica
gw[x_] := Table[GCD[w, x], {w, 1, x}] rrs[x_] := Flatten[Position[gw[x], 1]] dr[x_] := Delete[RotateLeft[rrs[x]]-rrs[x], -1] did[x_] := Length[Union[dr[x]]] t=Table[0, {25}]; Do[s=did[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t
Formula
a(n) = Min{x; A061498(x)=n}.
Extensions
a(8)-a(10) from Michel Marcus, Mar 25 2020
a(11)-a(16) from Giovanni Resta, Apr 13 2020
Comments