A076366 Number of numbers for which the count of nonprimes (i.e., 1 and composites) in their reduced residue set equals n.
10, 6, 6, 4, 4, 7, 3, 4, 3, 7, 4, 4, 0, 6, 5, 1, 4, 3, 7, 4, 7, 2, 3, 3, 2, 2, 6, 5, 2, 2, 0, 6, 4, 3, 5, 4, 5, 3, 1, 3, 3, 4, 4, 6, 2, 3, 1, 6, 1, 6, 3, 6, 1, 4, 4, 4, 1, 1, 3, 6, 3, 2, 4, 4, 1, 1, 2, 4, 6, 0, 3, 4, 3, 5, 4, 1, 2, 8, 2, 5, 6, 2, 2, 5, 1, 4, 2, 4, 7, 2, 1, 2, 6, 1, 3, 5, 2, 3, 5, 3
Offset: 1
Keywords
Examples
A048864(x) = 13: S = {}, a(13) = 0; A048864(x) = 16: S = {144}, a(16) = 1; A048864(x) = 22: S = {57,92}, a(22) = 2; A048864(x) = 7: S = {13,34,50}, a(7) = 3; A048864(x) = 4: S = {15,22,54,84}, a(4) = 4; A048864(x) = 15: S = {35,64,68,156,240}, a(15) = 5; A048864(x) = 2: S = {5,10,14,20,42,60}, a(2) = 6; A048864(x) = 6: S = {11,21,32,40,72,78,210}, a(6) = 7; A048864(x) = 78: S = {133,177,268,440,490,552,870,990}, a(78) = 8; A048864(x) = 1: S = {1,2,3,4,6,8,12,18,24,30}, a(1) = 10; See A048597.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
listn(nn) = {my(v = vector(10^5, n, eulerphi(n) - (primepi(n) - omega(n)))); vector(nn, k, if (#(w=Vec(select(x->(x==k), v, 1))) == 0, 0, #w));} \\ Michel Marcus, Feb 23 2020