cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076387 Numbers n such that sum of digits in base 9 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 5, 7, 9, 21, 27, 65, 69, 70, 81, 84, 90, 110, 123, 126, 130, 133, 154, 189, 222, 228, 243, 252, 259, 264, 327, 329, 333, 340, 342, 343, 350, 365, 372, 381, 402, 434, 450, 516, 528, 580, 588, 618, 621, 650, 684, 729, 730, 731, 738, 740, 741, 756, 765, 774
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Comments

The sequence is infinite because, for m = 9^k, k >= 0, digsum(m_9) = 1. - Marius A. Burtea, Jul 10 2019

Examples

			21 = 23_9, digsum(23_9) = 5, PrimeDivisors(21) = {3, 7}, sopf(21) = 3+7 = 10 = 5*2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..800]| &+PrimeDivisors(n) mod &+Intseq(n,9) eq 0] ; // Marius A. Burtea, Jul 10 2019
  • Maple
    A076387 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 9); t1 := floor(t1/9); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;
  • PARI
    {for(ixp=2,783,
    casi=ixp;cvst=0;dsu=0;M=factor(ixp);smt=0;
    for(i=1,matsize(M)[1],smt=smt+M[i, 1]);
    while(casi!=0,
    cvd=casi%9;dsu=dsu+cvd;casi=(casi-cvd)/9);
    if(smt%dsu==0,print1(ixp,", ")))} \\ Douglas Latimer, May 08 2012