cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076413 Number of ways n is expressible as the least common multiple of a nonempty set of positive integers not containing either 1 or n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 6, 0, 1, 1, 0, 0, 6, 0, 6, 1, 1, 0, 28, 0, 1, 0, 6, 0, 45, 0, 0, 1, 1, 1, 72, 0, 1, 1, 28, 0, 45, 0, 6, 6, 1, 0, 120, 0, 6, 1, 6, 0, 28, 1, 28, 1, 1, 0, 850, 0, 1, 6, 0, 1, 45, 0, 6, 1, 45, 0, 672, 0, 1, 6, 6, 1, 45, 0, 120, 0, 1, 0, 850, 1, 1, 1, 28, 0, 850, 1, 6, 1
Offset: 1

Views

Author

Amarnath Murthy and Dean Hickerson, Oct 09 2002

Keywords

Examples

			a(12)=6; the 6 sets are: {3,4}, {4,6}, {2,3,4}, {2,4,6}, {3,4,6}, {2,3,4,6}.
		

Crossrefs

Programs

  • Mathematica
    a076078[n_] := Module[{d, i}, d=Divisors[n]; Sum[MoebiusMu[n/d[[i]]]*(2^DivisorSigma[0, d[[i]]]-1), {i, 1, Length[d]}]]; a[n_] := a076078[n]/2-2^(DivisorSigma[0, n]-2)
  • PARI
    A076078(n) = { local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; } \\ This function from David Wasserman
    A076413(n) = if(1==n,0,(A076078(n)/2 - 2^(numdiv(n)-2))); \\ Antti Karttunen, May 25 2017

Formula

a(n) = A076078(n)/2 - 2^(d(n)-2), where d(n)=A000005(n) is the number of divisors of n.