A244347 Decimal expansion of 'mu', a Sobolev isoperimetric constant related to the "rod inequality", arising from the elasticity study of a rod that is clamped at both ends.
0, 0, 1, 9, 9, 7, 7, 4, 6, 9, 3, 4, 0, 5, 3, 8, 8, 6, 2, 6, 2, 0, 1, 9, 7, 1, 1, 6, 7, 4, 8, 4, 8, 5, 9, 7, 2, 0, 9, 9, 9, 7, 5, 6, 0, 6, 2, 4, 4, 9, 3, 6, 9, 1, 6, 9, 6, 6, 7, 8, 5, 9, 5, 1, 7, 6, 7, 2, 8, 3, 9, 9, 5, 5, 4, 4, 1, 3, 2, 5, 2, 6, 4, 6, 2, 7, 2, 0, 2, 1, 9, 1, 6, 1, 6, 1, 2, 7, 4, 8, 2, 9, 8, 8, 5, 9
Offset: 0
Examples
0.001997746934053886262...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.
Crossrefs
Cf. A076414 (theta).
Programs
-
Mathematica
digits = 104; theta = x /. FindRoot[Cos[x]*Cosh[x] == 1, {x, 5}, WorkingPrecision -> digits+10]; mu = 1/theta^4; Join[{0, 0}, RealDigits[mu, 10, digits] // First]
Formula
mu = 1/theta^4, where theta is A076414.
Comments