A076424 Smallest number that requires n steps to reach 0 when iterating the mapping k -> abs(reverse(lpd(k))-reverse(Lpf(k))). lpd(k) is the largest proper divisor and Lpf(k) is the largest prime factor of k.
1, 2, 3, 12, 31, 23, 56, 102, 193, 257, 570, 1129, 4970, 3229, 11551, 11969, 24232, 20094, 24103, 35996, 100090, 222284, 116269, 231488, 388768, 1751753, 2046872, 1140163, 1149979, 2156214, 3199384, 2971734, 7018074, 10163234, 13135933
Offset: 1
Examples
a(5) =31 since 31 requires 5 steps, but no m < 31 does. Although 23 < 31, 23 requires 6 steps.
Programs
-
PARI
{m=36; z=19200000; v=listcreate(m); for(i=1,m,listinsert(v,-1,i)); for(n=1,z,c=1; b=1; k=n; while(b&&c<=m, d=divisors(k); i=matsize(d)[2]-1; z=if(i>0,d[i],1); p=0; while(z>0,d=divrem(z,10); z=d[1]; p=10*p+d[2]); z= if(k==1,1,vecmax(component(factor(k),1))); q=0; while(z>0,d=divrem(z,10); z=d[1]; q=10*q+d[2]); a= abs(p-q); if(a==0,b=0,k=a; c++)); if(a==0,if(v[c]<0,v[c]=n; print1([c,n])))); print(); for(i=1,m,print1(v[i],","))}