cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076424 Smallest number that requires n steps to reach 0 when iterating the mapping k -> abs(reverse(lpd(k))-reverse(Lpf(k))). lpd(k) is the largest proper divisor and Lpf(k) is the largest prime factor of k.

Original entry on oeis.org

1, 2, 3, 12, 31, 23, 56, 102, 193, 257, 570, 1129, 4970, 3229, 11551, 11969, 24232, 20094, 24103, 35996, 100090, 222284, 116269, 231488, 388768, 1751753, 2046872, 1140163, 1149979, 2156214, 3199384, 2971734, 7018074, 10163234, 13135933
Offset: 1

Views

Author

Klaus Brockhaus, Oct 11 2002

Keywords

Examples

			a(5) =31 since 31 requires 5 steps, but no m < 31 does. Although 23 < 31, 23 requires 6 steps.
		

Crossrefs

Programs

  • PARI
    {m=36; z=19200000; v=listcreate(m); for(i=1,m,listinsert(v,-1,i)); for(n=1,z,c=1; b=1; k=n; while(b&&c<=m, d=divisors(k); i=matsize(d)[2]-1; z=if(i>0,d[i],1); p=0; while(z>0,d=divrem(z,10); z=d[1]; p=10*p+d[2]); z= if(k==1,1,vecmax(component(factor(k),1))); q=0; while(z>0,d=divrem(z,10); z=d[1]; q=10*q+d[2]); a= abs(p-q); if(a==0,b=0,k=a; c++)); if(a==0,if(v[c]<0,v[c]=n; print1([c,n])))); print(); for(i=1,m,print1(v[i],","))}