A076425 Numbers n such that zero is never reached by iterating the mapping k -> abs(reverse(lpd(k))-reverse(gpf(k))). lpd(k) is the largest proper divisor and gpf(k) is the largest prime factor of k.
2074, 2113, 2179, 2914, 3111, 4112, 4371, 4390, 4456, 4956, 4978, 5185, 5450, 5750, 6474, 6585, 6827, 7248, 7259, 7285, 7467, 8175, 8625, 8647, 9378, 9711, 9739, 10199, 10975, 11407, 11752, 12006, 12232, 12338, 12445, 12826, 13224, 13396
Offset: 1
Examples
For 4112 the mapping leads to a fixed point (cf. A076426): 4112 -> 5750 -> 5750 -> ...; for 2074 the mapping leads to a cycle: 2074 -> 7285 -> 7467 -> 9711 -> 7285 -> ...
Programs
-
PARI
{stop=20; for(n=1,13600,c=1; b=1; k=n; while(b&&c
1,v[a-1],1); p=0; while(z>0,d=divrem(z,10); z=d[1]; p=10*p+d[2]); z=if(k==1,1,vecmax(component(factor(k),1))); q=0; while(z>0,d=divrem(z,10); z=d[1]; q=10*q+d[2]); a=abs(p-q); if(a==0,b=0,k=a; c++)); if(a>0,print1(n,",")))}
Comments