cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076468 Perfect powers m^k where k >= 4.

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 3125, 4096, 6561, 7776, 8192, 10000, 14641, 15625, 16384, 16807, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 78125, 83521, 100000, 104976, 117649
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n then at least p^4|n.
Subsequence of A036967. - R. J. Mathar, May 27 2011

Crossrefs

Programs

  • Haskell
    import qualified Data.Set as Set (null)
    import Data.Set (empty, insert, deleteFindMin)
    a076468 n = a076468_list !! (n-1)
    a076468_list = 1 : f [2..] empty where
       f xs'@(x:xs) s | Set.null s || m > x ^ 4 = f xs $ insert (x ^ 4, x) s
                      | m == x ^ 4  = f xs s
                      | otherwise = m : f xs' (insert (m * b, b) s')
                      where ((m, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 19 2013
    
  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 3, a = Append[a, n]; Print[n]], {n, 2, 131071}]; a
  • Python
    from sympy import mobius, integer_nthroot
    def A076468(n):
        def f(x): return int(n+2+x-integer_nthroot(x,4)[0]-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,9)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]-3) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 3 - zeta(2) - zeta(3) + Sum_{k>=2} mu(k)*(3 - zeta(k) - zeta(2*k) - zeta(3*k)) = 1.1473274274... . - Amiram Eldar, Dec 03 2022