A076468 Perfect powers m^k where k >= 4.
1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 3125, 4096, 6561, 7776, 8192, 10000, 14641, 15625, 16384, 16807, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 78125, 83521, 100000, 104976, 117649
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import qualified Data.Set as Set (null) import Data.Set (empty, insert, deleteFindMin) a076468 n = a076468_list !! (n-1) a076468_list = 1 : f [2..] empty where f xs'@(x:xs) s | Set.null s || m > x ^ 4 = f xs $ insert (x ^ 4, x) s | m == x ^ 4 = f xs s | otherwise = m : f xs' (insert (m * b, b) s') where ((m, b), s') = deleteFindMin s -- Reinhard Zumkeller, Jun 19 2013
-
Mathematica
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 3, a = Append[a, n]; Print[n]], {n, 2, 131071}]; a
-
Python
from sympy import mobius, integer_nthroot def A076468(n): def f(x): return int(n+2+x-integer_nthroot(x,4)[0]-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,9)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]-3) for k in range(5,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Formula
Sum_{n>=1} 1/a(n) = 3 - zeta(2) - zeta(3) + Sum_{k>=2} mu(k)*(3 - zeta(k) - zeta(2*k) - zeta(3*k)) = 1.1473274274... . - Amiram Eldar, Dec 03 2022
Comments