A076469 Perfect powers m^k where k >= 5.
1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15625, 16384, 16807, 19683, 32768, 46656, 59049, 65536, 78125, 100000, 117649, 131072, 161051, 177147, 248832, 262144, 279936, 371293, 390625, 524288, 531441
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 537823}]; a
-
Python
from sympy import mobius, integer_nthroot def A076469(n): def f(x): return int(n+3+x-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,8)[0]-integer_nthroot(x,9)[0]-integer_nthroot(x,12)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]+integer_nthroot(x,k<<2)[0]-4) for k in range(5,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Formula
Sum_{n>=1} 1/a(n) = 4 - zeta(2) - zeta(3) - zeta(4) + Sum_{k>=2} mu(k)*(4 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k)) = 1.06932853458... . - Amiram Eldar, Dec 03 2022
Comments