cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076470 Perfect powers m^k where k >= 6.

Original entry on oeis.org

1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 117649, 131072, 177147, 262144, 279936, 390625, 524288, 531441, 823543, 1000000, 1048576, 1594323, 1679616, 1771561
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

A necessary but not sufficient condition is that if p|n when at least p^6|n.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 1953124}]; a
  • Python
    from sympy import mobius, integer_nthroot
    def A076470(n):
        def f(x): return int(n+9+x-(sum(integer_nthroot(x,d)[0] for d in (6,10,15))<<1)-sum(integer_nthroot(x,d)[0] for d in (8,9,12,20,25))+sum(mobius(k)*(sum(integer_nthroot(x,k*i)[0] for i in range(1,6))-5) for k in range(6,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 5 - zeta(2) - zeta(3) - zeta(4) - zeta(5) + Sum_{k>=2} mu(k)*(5 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k) - zeta(5*k)) = 1.03342597171... . - Amiram Eldar, Dec 03 2022