A076495 Smallest x such that sigma(x) mod x = n, or 0 if no such x exists.
2, 20, 4, 9, 0, 25, 8, 10, 15, 14, 21, 24, 27, 22, 16, 26, 39, 208, 36, 34, 51, 38, 57, 112, 95, 46, 69, 48, 115, 841, 32, 58, 45, 62, 93, 660, 155, 1369, 162, 44, 63, 1681, 50, 82, 123, 52, 129, 60, 75, 94, 72, 352, 235, 90, 329, 84, 99, 68, 265, 96, 371, 118, 64, 76
Offset: 1
Keywords
Examples
n=1: a(1) = smallest prime = 2. n=3: a(3) = 4 since sigma(4) mod 4 = 7 mod 4 = 3. n=5: Very difficult case (see Comments section).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- Carl Pomerance, On the congruences σ(n) ≡ a (mod n) and n ≡ a (mod φ(n)), Acta Arithmetica 26:3 (1974-1975), pp. 265-272. (See theorem 4.)
Programs
-
Mathematica
f[x_] := s=Mod[DivisorSigma[1, n], n]; t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 1, 10000000}]; t
-
PARI
a(n)=my(k);while(sigma(k++)%k!=n,);k \\ Charles R Greathouse IV, Dec 28 2013
Comments