A076622 Coefficient of x^a(n) in (x-1)*(x-2)*...*(x-n) is the largest one (not in absolute value).
1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 1
Keywords
Examples
(x-1)(x-2)(x-3) = x^3 - 6*x^2 + 11*x - 6, 11 is the largest coefficient for x^1, hence a(3)=1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A065048.
Programs
-
Maple
N:= 200: # for a(1)..a(N) V:= Vector(N): L:= <1>: for n from 1 to N do L:= -n*
+ <0, L>; V[n]:= max[index](L)[1]-1 od: convert(V,list); # Robert Israel, Aug 27 2020
Formula
Is a(n)-floor(log(n)) bounded ?