cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076733 Largest k such that k! divides C(2n,n).

Original entry on oeis.org

2, 3, 2, 2, 3, 3, 4, 3, 2, 2, 4, 2, 2, 5, 6, 3, 3, 3, 5, 3, 5, 5, 6, 3, 4, 4, 2, 2, 5, 2, 2, 3, 3, 3, 4, 2, 2, 5, 2, 2, 5, 5, 7, 5, 7, 7, 7, 3, 5, 4, 4, 4, 7, 5, 4, 4, 4, 5, 6, 4, 4, 4, 5, 3, 3, 3, 5, 3, 5, 5, 6, 3, 5, 5, 7, 5, 7, 7, 7, 3, 2, 2, 5, 2, 2, 7, 5, 5, 7, 2, 2, 5, 2, 2, 7, 3, 5, 5, 5, 5, 6, 5, 5, 5, 6
Offset: 1

Views

Author

Benoit Cloitre, Oct 28 2002

Keywords

Comments

All a(n) >= 2, with a(n) = 2 if and only if n is in A005836. - Robert Israel, Feb 01 2019

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,k;
      x:= binomial(2*n,n);
      for k from 2 do if not (x/k!)::integer then return k-1 fi od
    end proc:
    map(f, [$1..105]); # Robert Israel, Feb 01 2019
  • Mathematica
    a[n_] := Module[{k = 2}, While[Divisible[Binomial[2n, n], k!], k++]; k-1];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 01 2024 *)
  • PARI
    a(n)=if(n<0,0,k=1; while(binomial(2*n,n)%(k!) == 0,k++); k-1)