A076744 Related to the expected length of the shortest nonintersecting path through n points on a Sierpiński Gasket from corner to corner.
4, 72, 4176, 731808, 381879360, 592267282560, 2733202405059840, 37590062966534453760, 1542797317119230338360320, 189160927199005707074274969600, 69339320764681731806436884240486400, 76034016779649931607383549266935620608000
Offset: 1
Keywords
Programs
-
Maple
b:=n->sum(binomial(n,k)*(-1)^k/(2*3^k-3),k=0..n); c:=n->product(2*3^k-3,k=0..n); a:=n->b(n)*c(n); seq(a(n),n=1..12);
Formula
a(n) = b(n) * c(n) where b(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) / (2*3^k-3) and c(n) = Product_{k=0..n} (2*3^k-3).
Extensions
Revised by Sean A. Irvine, Apr 14 2025
Comments