A076764 n such that Omega(n-1) < Omega(n) < Omega(n+1), where Omega(m) = the number of prime factors of m, counting multiplicity.
62, 63, 74, 188, 194, 195, 207, 242, 255, 275, 278, 279, 314, 363, 374, 398, 399, 404, 422, 423, 455, 458, 483, 494, 495, 524, 539, 614, 615, 662, 663, 674, 692, 728, 734, 735, 747, 758, 759, 764, 782, 783, 854, 867, 890, 927, 935, 975, 998, 999
Offset: 1
Keywords
Examples
Omega(61) = 1 < Omega(62) = 2 < Omega(63) = 3, so 62 is a 1-apex of Omega.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Res:= NULL: a:= numtheory:-bigomega(1): b:= numtheory:-bigomega(2): for n from 3 to 1001 do c:= numtheory:-bigomega(n); if a < b and b < c then Res:= Res, n-1 fi; a:= b; b:= c; od: Res; # Robert Israel, Oct 28 2018
-
Mathematica
Select[Range[3, 10^3], Omega[ # - 1] < Omega[ # ] < Omega[ # + 1] &] Flatten[Position[Partition[PrimeOmega[Range[1000]],3,1],?(Min[ Differences[ #]]>0&),{1},Heads->False]]+1 (* _Harvey P. Dale, Nov 28 2015 *)
Extensions
Edited by Robert Israel, Oct 28 2018