cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 68, 148, 342, 848, 2297, 6928, 24034, 98854, 503137, 3318732, 29708814, 374039266, 6739630253, 173801649708, 6356255181216, 326203517516704, 23294352980140884, 2301176047764925736, 313285408199180770635, 58638266023262502962716
Offset: 0

Views

Author

Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002

Keywords

Examples

			a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates.
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994.

Crossrefs

Row sums of triangle A076831. Cf. A034328, A055545.

Extensions

Edited by N. J. A. Sloane, Nov 01 2007, at the suggestion of Gordon Royle.