cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078185 Number of n X n matrices over an alphabet of size 15.

Original entry on oeis.org

1, 15, 50625, 38443359375, 6568408355712890625, 252511682940423488616943359375, 2184164409074570299708284437656402587890625
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 21 2002

Keywords

Comments

a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Cf. A076811.

Programs

  • Magma
    [15^(n^2): n in [0..10]]; // Vincenzo Librandi, Jun 05 2011
  • Mathematica
    Table[15^(n^2), {n, 7}]

Formula

a(n) = 15^(n^2).

A073940 Number of n X n matrices over an alphabet of size 14.

Original entry on oeis.org

1, 14, 38416, 20661046784, 2177953337809371136, 44998795805848373114515226624, 182225556172186058674940229804729969934336
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 20 2002

Keywords

Comments

a(n) = k^(n^2) with k = 2, 3, 4,... counts n X n matrices over an alphabet of size k.

Crossrefs

Cf. A076811.

Formula

a(n) = 14^(n^2).

Extensions

a(5)-a(7) from Vincenzo Librandi, Aug 08 2010
Showing 1-2 of 2 results.