cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076823 Array of coefficients of 1/det(M_n)*P(M_n) where P(M_n) is the characteristic polynomial of the n-th n X n Hilbert matrix M_n(i,j)=1/(i+j-1).

Original entry on oeis.org

-1, 1, 1, -16, 12, -1, 381, -3312, 2160, 1, -10496, 1603680, -10137600, 6048000, -1, 307505, -1022881200, 92708406000, -476703360000, 266716800000, 1, -9316560, 750409713900, -1242627237734400, 78981336366912000, -349935855575040000, 186313420339200000, -1
Offset: 1

Views

Author

Benoit Cloitre, Nov 27 2002

Keywords

Comments

Montgomery made a conjecture related to the largest eigenvalue of the Hilbert matrix (cf. Matthews link)

Examples

			Triangle begins:
  -1, 1;
  1, -16, 12;
  -1, 381, -3312, -2160;
  ...
		

Crossrefs

Cf. A005249.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra; local P,M;
      M:= HilbertMatrix(n);
      P:= CharacteristicPolynomial(M,t)/Determinant(M);
      seq(coeff(P,t,i),i=0..n)
    end proc:
    seq(f(n),n=1..10); # Robert Israel, May 07 2018
  • Mathematica
    row[n_] := Module[{P, M, x}, M = HilbertMatrix[n]; P = CharacteristicPolynomial[M, x]/Det[M]; (-1)^n CoefficientList[P, x]];
    Array[row, 10] // Flatten (* Jean-François Alcover, Jun 22 2020 *)
  • PARI
    vector(n+1,i,(polcoeff(charpoly(mathilbert(n))/matdet(mathilbert(n)),i-1))) \\ for the "n-th row"

Formula

T(n,0)=(-1)^n, T(n,n) = A005249(n). - Robert Israel, May 07 2018