A076847 Ramanujan function tau(p) as p runs through the primes.
-24, 252, 4830, -16744, 534612, -577738, -6905934, 10661420, 18643272, 128406630, -52843168, -182213314, 308120442, -17125708, 2687348496, -1596055698, -5189203740, 6956478662, -15481826884, 9791485272, 1463791322, 38116845680, -29335099668, -24992917110
Offset: 1
Keywords
Examples
84480 = A000594(2^3) = sqrt(2^(11))^3*S(3, -24/sqrt(2^(11))) = (-24)*((-24)^2 -2*2^11) = 84480. - _Wolfdieter Lang_, May 15 2016
References
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 114, 138-139.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Denis Xavier Charles, Computing the Ramanujan tau function, Ramanujan J. 11:2 (2006), pp. 221-224.
- D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433.
- D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy]
- Louis J. Mordell, On Mr. Ramanujan's empirical expansions of modular functions, Proceedings of the Cambridge Philosophical Society 19 (1917), pp. 117-124.
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
- Jan Vonk, Overconvergent modular forms and their explicit arithmetic, Bulletin of the American Mathematical Society 58.3 (2021): 313-356.
- Wikipedia, Ramanujan-Petersson conjecture
Programs
-
Mathematica
RamanujanTau[Prime[Range[30]]] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
taup(p)=(65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756 a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 22 2013
-
PARI
H(n)=sumdiv(core(n,1)[2],d,my(D=-n/d^2);if(D%4<2,qfbclassno(D)/max(1,D+6))) taup(p)=my(x='x,P=x^5-9*p*x^4+28*p^2*x^3-35*p^3*x^2+15*p^4*x-p^5);p^5*H(4*p)/2-1-sum(t=1,sqrtint(4*p),subst(P,x,t^2)*H(4*p-t^2)) a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 25 2013
-
Perl
use ntheory ":all"; forprimes { say ramanujan_tau($) } 100 # _Dana Jacobsen, Sep 05 2015
-
Python
from sympy import prime, divisor_sigma def A076847(n): return -24 if n == 1 else (q:=(p:=prime(n))**4)*(p+1)-24*(sum((i*(i*(i*(70*i - 140*p) + 90*p**2) - 20*p**3) + q)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1))) # Chai Wah Wu, Nov 09 2022
-
Sage
[p for (n,p) in enumerate(list(delta_qexp(100))) if is_prime(n)] # Peter Luschny, May 16 2016
Formula
a(n)*a(m) = A000594(prime(n)*prime(m)) for n != m (from the tau multiplicativity). - Wolfdieter Lang, May 15 2016
a(n)^2 = A000594(prime(n)^2) + prime(n)^11 (from alpha-multiplicativity). - Wolfdieter Lang, May 15 2016
Comments